首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1102篇
  免费   205篇
  国内免费   68篇
化学   20篇
力学   479篇
综合类   15篇
数学   112篇
物理学   749篇
  2024年   11篇
  2023年   55篇
  2022年   52篇
  2021年   65篇
  2020年   38篇
  2019年   72篇
  2018年   36篇
  2017年   38篇
  2016年   45篇
  2015年   38篇
  2014年   78篇
  2013年   32篇
  2012年   66篇
  2011年   62篇
  2010年   56篇
  2009年   66篇
  2008年   73篇
  2007年   59篇
  2006年   58篇
  2005年   43篇
  2004年   37篇
  2003年   28篇
  2002年   37篇
  2001年   34篇
  2000年   28篇
  1999年   31篇
  1998年   26篇
  1997年   19篇
  1996年   6篇
  1995年   11篇
  1994年   21篇
  1993年   11篇
  1992年   20篇
  1991年   10篇
  1990年   9篇
  1989年   4篇
排序方式: 共有1375条查询结果,搜索用时 15 毫秒
21.
天然气集输站场是天然气输送和储存过程中的枢纽,也是天然气泄漏检测的重点对象。传统的天然气泄漏检测技术响应慢、效率低,难以满足实际所需。可调谐半导体激光吸收光谱技术(TDLAS)以其响应速度快、灵敏度高、无需维护等优点得到广泛应用。使用可调谐半导体激光吸收光谱技术实现了同时对天然气的主要成分甲烷、乙烯、乙炔三种气体实时测量的开放式检测和报警系统。实验结果表明,该系统响应时间小于2s,其甲烷、乙烯、乙炔的测量精度分别小于100ppm-m,40ppm-m,50ppm-m,为石油化工行业中天然气泄漏检测技术提供了新的技术方法。  相似文献   
22.
涡激振动是造成海洋立管疲劳损伤的重要因素, 抑制振动能够保障结构安全, 延长使用寿命. 多数涡激振动抑制方法基于干扰流场的方式, 但在复杂环境条件下, 仅通过干扰流场对振动的抑制效果有限. 因此, 从结构层面考虑开展了海洋立管涡激振动抑制研究. 基于能量传递的理论, 阐述了立管涡激振动过程中的能量传递规律. 振动能量以行波形式由能量输入区传播至能量耗散区, 主要在能量耗散区被消耗. 通过局部增大能量耗散区的阻尼, 增加振动能量在传播过程中的消耗, 实现涡激振动抑制. 为了求解立管涡激振动响应, 构建了尾流振子预报模型, 并根据实验结果验证了理论模型的可靠性. 基于理论计算得到的能量系数, 判定立管涡激振动的能量输入区和能量耗散区. 通过对比立管增大阻尼前后的响应, 分析了涡激振动抑制效果. 研究结果表明: 在能量输入区增大阻尼对涡激振动的抑制效果并不显著; 在能量耗散区增大阻尼使能量衰减系数达到临界值之后, 能够显著降低立管上部和底部的涡激振动位移; 当能量衰减系数超过临界值后, 继续增大耗散区阻尼对涡激振动抑制效果的提升不明显.   相似文献   
23.
深海采矿系统中悬臂式立管涡激振动分析   总被引:1,自引:0,他引:1  
金国庆  邹丽  宗智  孙哲  王浩 《力学学报》2022,54(6):1741-1754
不同于传统的海洋立管, 深海采矿系统中的垂直提升管道可以被视为一个底部无约束的柔性悬臂式立管, 工作过程中同样面临涡激振动和柔性变形问题. 本文采用一种无网格离散涡方法和有限元耦合的准三维时域求解数值模型, 系统性地研究了不同流速下悬臂式立管的涡激振动问题. 结果表明: 悬臂式立管的横向振动模态阶数随折合速度增加而增大, 在一定折合速度范围内主导振动模态保持不变; 当主导模态转变时, 对应的横向振幅会发生突降, 但是当新的高阶模态被激发后, 立管振幅随来流速度增加而再次逐渐增大; 在相同的振动模态下, 立管底部位移均方根值随折合速度线性增加, 主导振动频率在模态转变时会出现跳跃现象; 特别地, 本文讨论了三阶主导模态下悬臂式立管的振动响应, 无约束的立管底部呈现出较大的振动能量, 且振幅的驻波特征随折合速度增加而逐渐增强; 本文比较了两端铰支立管与悬臂式立管的涡激振动响应特征, 两者在振幅和主导振动频率两方面均表现出了相同的变化趋势.   相似文献   
24.
陆子  何毅翔  张岚斌  代胡亮  王琳 《力学学报》2022,54(11):3147-3156
流致振动现象广泛存在于机械、航空、土木和石油等重要工程领域, 为防止工程结构因流致振动行为而造成疲劳破坏, 有必要对稳定性、动力学响应及其振动控制做深入研究. 本文提出了一种由弹簧和质量块构成的非线性吸能器(nonlinear targeted energy transfer, NTET), 研究了该非线性吸能器对弹性支承圆柱体涡激振动的被动控制影响机制. 基于能量法推导了圆柱体涡激振动非线性被动控制的耦合动力学方程, 通过设计非线性弹簧?质量块构型的NTET, 进一步开展了涡激振动控制的实验研究, 并与理论预测结果进行了较好的对比, 获得提升涡激振动控制效果的最佳参数值. 研究发现, NTET的质量、弹簧刚度以及弹簧预应力等参数会对涡激振动控制效果产生显著的影响. 本文研究结果表明, 该耦合系统中圆柱体和NTET均表现出周期性的稳态振动响应, NTET质量的改变会显著影响系统的耦合频率. 在无预应力状态下, NTET质量越大、刚度越小时, 有更好的减振效果. 当弹簧预应力逐渐增大时, NTET的非线性刚度逐渐变弱, 会降低涡激振动控制性能. 参数分析表明: 随着涡激振动控制性能的提升, 圆柱体的振幅逐渐较小, NTET的振幅逐渐增大, 能量传递效率逐渐提高. 研究结果可为工程中涡激振动控制策略的高效设计提供有用的理论支撑和实验数据.   相似文献   
25.
文章采用标准k-ω SST湍流模型和动网格技术, 实现了绕俯仰振荡NACA66水翼非定常流动结构与水动力特性的数值模拟, 并基于有限域涡量矩理论定量表征了局部旋涡结构对水翼动力特性的影响. 研究结果表明: 在水翼升程阶段, 当攻角较小时, 层流向湍流的转捩点由水翼尾缘向前缘移动; 在较大攻角时, 顺时针尾缘涡?TEV在水翼吸力面上生成并向前缘发展, 同时与吸力面上的顺时针前缘涡?LEV融合发展为附着在整个吸力面上的新前缘涡?LEV, 新的?LEV与逆时针尾缘涡+TEV相互作用直至完全脱落, 直接导致了水翼的动力失速, 在回程阶段, 绕振荡水翼的流场结构逐渐由湍流转变为层流. 基于有限域涡量矩理论的定量分析发现, 有限域内附着的?LEV和?TEV提供正升力, 当?LEV发展覆盖整个吸力面时对升力的贡献最大, 占总升力近50%, 而+TEV提供负升力. 同时发现, 有限域内各旋涡内部的不同区域提供的升力有正有负; 而逸出有限域的旋涡内部不同区域提供的升力方向均保持一致, 其中顺时针涡提供正升力, 而逆时针涡提供负升力. 在失速阶段, 域外旋涡整体对升力贡献较小且存在小幅波动, 体现了流动的非定常性.   相似文献   
26.
储氢长管拖车在城市公路隧道运输时突发异常状况将导致氢气泄漏和燃爆事故,本文通过构建储氢长管拖车隧道事故模型,基于隧道内氢气泄漏浓度、冲击波和温度场等特性参数分析,阐明燃爆事故演化规律和毁伤机理。研究表明,泄漏氢气在隧道口呈竖向羽流扩散,而隧道内扩散时会在一定区域积聚。氢气燃爆处驻留车辆和设备构成边界约束条件,将增强爆炸冲击波的传播速度和峰值超压。此外,冲击波与火焰形成耦合效应,进而增强了破坏后果。  相似文献   
27.
When the structural wall moves over a fixed grid, the structure coverage will change, resulting in many dead and emerging elements. To avoid the influence of malformation and reconstruction of body-fitted grids on the calculation efficiency and accuracy of the fluid-structure interaction problems with coupled boundary movement on the fixed grid, an improved numerical method for describing the interaction between an immersed rigid body and fluid based on a sharp-interface is proposed. In this method, both the fluid and solid are regarded as pure fluid domains in the whole computational domain, and the solid boundary is divided into several Lagrangian grid points. The flow parameter or velocity is reconstructed by interpolation at the interface element, which is then directly used as the boundary condition of the flow field, thus reflecting the influence of the wall boundary conditions. The method constructs the calculation structure of “virtual point, force point and vertical foot point”, and the velocity of the virtual point is obtained by bilinear interpolation. Then, the velocity of the force point is calculated by forcing the solid boundary to meet the no-slip condition, and the equations of the coupling system based on the immersion boundary method are finally solved to realize the numerical simulation of the flow with a complex moving boundary. The numerical program for this immersed boundary method is established using C++, then the accuracy and reliability of the proposed method are validated by comparison with the literature and experimental results of the basic numerical example of flow around a cylinder. Furthermore, the effects of the structural shape and the angle of attack on the trailing vortex structure, the vortex shedding frequency, and the lift/ coefficient characteristics of the flow around the elliptical cylinder have been analyzed. The anti-symmetric S-type, “P+S” Ⅰ-type and “P+S” Ⅱ-type trailing vortex shedding modes, as well as the variation laws of the vortex structure size, vortex shedding frequency and lift-drag coefficients ratio with axis ratio and angle of attack, are captured. The critical angle of attack (25°) corresponding to the maximum lift-drag ratio is determined as 25°.  相似文献   
28.
29.
大涡模拟方法(LES)是研究复杂湍流问题的重要工具,在航空航天、湍流燃烧、气动声学、大气边界层等众多工程领域中具有广泛的应用前景.大涡模拟方法采用粗网格计算大尺度上的湍流结构,并用亚格子(SGS)模型近似表达滤波尺度以下的流动结构对大尺度流场的作用.传统的亚格子模型由于只利用了单点流场信息和简单的函数关系,在先验验证中...  相似文献   
30.
单轴分布式光纤传感器管线泄漏探测方法及定位理论分析   总被引:17,自引:10,他引:7  
谭靖  陈伟民  朱永  王丁 《光子学报》2006,35(2):228-231
利用Sagnac干涉原理的分布式光纤传感器是一种可用于长途油气管线侵入、泄漏探测和定位的新技术.为了克服屏蔽和隔离Sagnac光纤环中未用作传感的那一半光纤所带来的屏蔽困难、成本增加等问题,提出一种单轴分布式光纤传感器的方法.其原理是利用一条光纤代替光纤环,并在光纤尾端设置法拉第旋转镜,构成偏振无关Sagnac干涉仪探测和定位管线泄漏.文中详细分析和讨论了该方法的系统光路和探测定位原理.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号