首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3275篇
  免费   1314篇
  国内免费   340篇
化学   244篇
晶体学   32篇
力学   514篇
综合类   128篇
数学   321篇
物理学   3690篇
  2024年   47篇
  2023年   89篇
  2022年   106篇
  2021年   125篇
  2020年   93篇
  2019年   121篇
  2018年   60篇
  2017年   140篇
  2016年   169篇
  2015年   203篇
  2014年   380篇
  2013年   222篇
  2012年   246篇
  2011年   276篇
  2010年   262篇
  2009年   238篇
  2008年   271篇
  2007年   212篇
  2006年   211篇
  2005年   211篇
  2004年   210篇
  2003年   181篇
  2002年   116篇
  2001年   108篇
  2000年   83篇
  1999年   67篇
  1998年   59篇
  1997年   76篇
  1996年   56篇
  1995年   49篇
  1994年   46篇
  1993年   30篇
  1992年   40篇
  1991年   28篇
  1990年   18篇
  1989年   23篇
  1988年   15篇
  1987年   9篇
  1986年   5篇
  1985年   3篇
  1984年   6篇
  1983年   10篇
  1982年   7篇
  1979年   1篇
  1959年   1篇
排序方式: 共有4929条查询结果,搜索用时 15 毫秒
221.
高准确度自动跟踪系统是太阳能聚光器必不可少的组成部分,而信号采集器能否精确可靠地采集到阳光照射方向的信号又是自动跟踪准确度的关键.本文提出了一种粗细调互补信号采集器的设计方案,在正常工作期间通过软件能够根据需要不断地自动调整选择二组光电传感器中其中一组输出的差模信号作为有效信号,从而有效地解决了大范围寻找太阳和高准确度跟踪之间的矛盾|而在此基础上改进为对聚光后的阳光信号进行采集的新结构,又彻底解决了光电传感器本身在光照强度很大时进入饱和区与光照强度很弱时输出的差模信号太小的问题,有效延长了聚光器在早晚时段的正常工作时间.据此原理制作的聚光型粗细调互补信号采集器应用于某公司的CPV型1200W砷化镓发电系统中,取得了很好的跟踪效果,其实际跟踪误差≤0.1°(立体角).  相似文献   
222.
杨初平  翁嘉文  李海  谭穗妍 《光子学报》2014,41(10):1211-1216
相位解调是条纹相位分析的关键问题.本文提出一种应用小波频率估计联合频率导数对变形条纹进行瞬时频率分析,从中提取参考基频,从而依靠单一变形条纹实现相位解调的方法.首先,理论上证明了当变形条纹瞬时频率空间导数等于零,该空间点的瞬时频率等于参考基频频率;其次,引入Gabor小波提取变形条纹的瞬时频率空间分布,利用变形条纹瞬时频率的空间导数分布识别提取参考基频,从而实现相位解调.利用该方法进行了三维形貌测量的实验,结果表明该方法在实现相位解调中效果良好.  相似文献   
223.
团状雪灵芝三种提取工艺的红外光谱跟踪分析   总被引:1,自引:0,他引:1  
为了建立一种基于红外光谱跟踪分析的过程分析方法用于团状雪灵芝(AP)提取分离过程的宏观指导,从同一工艺不同提取物及不同工艺同一提取物两个方面,对三种提取工艺各四种提取物进行红外光谱跟踪测试,并对红外光谱及相应二阶导数谱进行了深入的对比分析研究。光谱分析结果显示,同一工艺的不同提取物具有明显不同的光谱吸收特征;不同工艺同一提取物的吸收特征总体相似,但彼此之间也存在明显的光谱差异。1 603和1 123cm-1的特征峰表明,提取法一中,黄酮类及其糖苷主要进入了酯提物,余者进入了醇提物。相反,方法二、三中,大部分黄酮类进入了醇提物,水提物中还存在微量黄酮苷。此外,根据2 850cm-1峰强可知,方法二酯提物中苷元及高级饱和烃基含量较高。类似的,1 066和2 927cm-1等特征吸收峰表明方法三的醇提物中糖苷及多糖含量较高。研究结果表明,AP组分在不同提取工艺中的迁移规律不尽相同,提取过程中的物质迁移信息可以通过各提取物红外光谱的跟踪分析进行记录和直观解析。红外光谱跟踪分析法是一种快速、有效、低碳、环保的过程分析方法,对于诸如AP等植物提取分离过程的质量控制或工艺优化具有宏观指导意义。  相似文献   
224.
采用钛氰铁高温催化热解方法可制备发射性能优异的碳纳米管薄膜阴极。当脉冲电场峰值达到30 MV/m时,发射电流密度达kA/cm2以上,对应相对论电子束流强度高达15 kA,等离子体发射机制参与电子束发射过程。以重复频率10 Hz发射模式时,其发射阈值低,束压、束流波形跟随性好,发射稳定性优于石墨阴极。发射发次达到1000后,碳纳米管形态依然完整,界面无脱附。  相似文献   
225.
惯性约束聚变频率转换系统中,大口径薄型KDP晶体的面形质量是影响频率转换效率能否达到设计要求的关键因素之一。针对45放置状态下口径为400 mm400 mm的三倍频KDP晶体,采用ANSYS有限元分析软件,建立了不同夹持方式和具有不同加工误差的KDP晶体模型和夹具模型,分析了加工误差对不同夹持方式下KDP晶体附加面形的影响,给出了不同加工误差和不同夹持情况下,KDP晶体附加面形的P-V值和RMS值。研究结果表明,夹持方式和加工误差是引起KDP晶体附加面形变化的重要因素,正面压条夹持方式即使在晶体和夹具存在加工误差时也可以较好地控制晶体的附加面形。  相似文献   
226.
重频纳秒高压脉冲下变压器油击穿特性的实验研究   总被引:1,自引:2,他引:1       下载免费PDF全文
介绍了重频纳秒高压脉冲下变压器油绝缘特性研究的现状和成果。进行了重频(1 Hz~1 kHz)纳秒高压脉冲下25#变压器油击穿特性的实验研究。实验发现相对于单次纳秒脉冲,重频脉冲下25#变压器油的击穿场强与频率相关,频率提高,击穿场强降低,但不是线性关系,在频率超过100 Hz时变压器油的击穿场强变化较小,在10~100 Hz时变压器油的击穿场强迅速下降。初步总结了重复频率、脉冲宽度和击穿场强的关系,对重频脉冲下变压器油的击穿机理进行了初步的探讨。  相似文献   
227.
合肥光源储存环上八极磁铁的动力学效应分析   总被引:1,自引:0,他引:1       下载免费PDF全文
 为达到合肥光源二期工程通用模式的设计流强,在储存环上选择垂直方向β函数比较大的位置增加一组八极磁铁。该组八极磁铁对水平方向动力学孔径影响很小,虽然垂直方向动力学孔径明显减小,但仍然大于物理孔径,不会影响束流的注入积累过程。该组八极磁铁产生的垂直方向振荡频率分散可以提供ms量级的Landau阻尼时间,将明显增强抑制垂直方向束流集体不稳定性的能力。该组八极磁铁投入运行后,合肥光源注入积累过程明显改善,注入流强从无八极磁铁时的约100 mA提高到330 mA左右。  相似文献   
228.
王兆华  魏志义  张杰 《物理学报》2005,54(3):1194-1199
建立了一台频率分辨偏振光学开关(PG FROG)法飞秒脉冲测量装置,利用该装置对“极光Ⅱ号”飞秒激光放大系统进行了测量.在利用偏振光学开关法测得的时域和频域信号基础上,结合对信号光强度分布的计算机迭代处理,得到了有关飞秒激光电场、光谱及其相位的信息;并且对系统工作在不同状态时的激光脉冲进行了测量和比较分析,给出了有关该系统较详细的电场、光谱、相位以及啁啾状况.结果显示,当系统工作在零啁啾附近时,该系统输出的激光脉冲的电场、光谱和相位分布较规则,相位起伏较小;当系统偏离零啁啾状态时,虽然电场和光谱变化不很明显,但相位分布变化剧烈. 关键词: 频率分辨偏振光学开关(PG FROG)法 飞秒激光 自相关  相似文献   
229.
报道了自主研制的面向Li原子D1线频率测量应用的掺铒飞秒光纤光学频率梳,包括飞秒激光源,频率探测及控制单元,光谱展宽及拍频单元.光纤光梳系统中飞秒激光光源是一套基于非线性偏振旋转锁模机制的掺铒飞秒光纤激光器,重复频率为196.5MHz,中心波长为1 572nm.利用f-2f法探测载波包络相移频率,获得信噪比约为40dB的信号(分辨率带宽300kHz).改变飞秒激光光源泵浦控制载波包络相移频率、频率稳定度是3.74×10-18/τ1/2;通过电光晶体和压电陶瓷改变飞秒激光光源腔长来控制重复频率frep、频率稳定度是1.75×10-13/τ1/2.利用高非线性光纤和倍频晶体将光纤光梳直接输出光谱由1 520~1 607nm扩展到671nm,获得了单模功率为208nW的光信号.与671nm单频激光拍频产生约为60dB(分辨率带宽1Hz)信号,满足Li原子D1线频率测量实验的需求.  相似文献   
230.
以微蜂窝系统为背景,研究了以测试射线法和虚拟源射线跟踪法为代表的射线跟踪技术,并用这两种方法对射线跟踪进行建模,分析比较两种模型的优缺点.利用这两种模型对实际情况进行计算,精确地找出所有给定情况的传播路径并可视化;对多波干涉的振幅进行了统计学分析,对宽带多波干涉现象进行了数学建模,并分析了合成波的包络统计特性.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号