首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1623篇
  免费   237篇
  国内免费   1364篇
化学   2377篇
晶体学   54篇
力学   198篇
综合类   38篇
数学   31篇
物理学   526篇
  2024年   16篇
  2023年   55篇
  2022年   56篇
  2021年   81篇
  2020年   77篇
  2019年   84篇
  2018年   76篇
  2017年   88篇
  2016年   87篇
  2015年   126篇
  2014年   167篇
  2013年   183篇
  2012年   180篇
  2011年   166篇
  2010年   170篇
  2009年   171篇
  2008年   143篇
  2007年   141篇
  2006年   151篇
  2005年   115篇
  2004年   129篇
  2003年   103篇
  2002年   98篇
  2001年   94篇
  2000年   67篇
  1999年   49篇
  1998年   39篇
  1997年   49篇
  1996年   38篇
  1995年   42篇
  1994年   40篇
  1993年   18篇
  1992年   21篇
  1991年   20篇
  1990年   30篇
  1989年   34篇
  1988年   7篇
  1987年   5篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1980年   1篇
排序方式: 共有3224条查询结果,搜索用时 15 毫秒
111.
采用不同硅铝比的MCM-41负载离子液体,制备得到一系列负载型双酸位催化剂,并用XRD、FTIR、N2-吸脱附、热重分析及TEM对其进行表征,以大豆油与甲醇的酯交换反应为探针实验考察了其催化活性.结果表明,离子液体成功固载于介孔分子筛并能保持其介孔结构,且在酯交换反应中表现出良好的反应活性.在ILs负载量为30%,醇油物质的量的比为36:1,140 ℃下反应5 h,生物柴油收率在90%以上;而分子筛中Al的引入为活性组分离子液体构建了有益的酸环境,促进了其催化活性的提高;与均相离子液体相比,负载型催化剂又能明显提高生物柴油的收率,且回收利用4次后,生物柴油收率仍接近88%.  相似文献   
112.
以P123(聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物)为模板剂,Ce(NO33为反应原料,通过考察加热方式、加热温度、原料配比等因素,合成了结构性能较好、表面羟基含量较高的介孔CeO2材料。利用XRD,N2吸附-脱附,TEM,Raman,FT-IR等技术对合成样品的结构性能进行了表征,结果表明,当P123与Ce(NO33物质的量之比为1:10,在110℃水热下合成的CeO2结构性能最好。以酸性橙7(AO7)为探针分子,对合成介孔CeO2的光催化性能进行评价。光催化结果证明,由于表面羟基含量较高、介孔及氧缺位的形成,所合成结构性能较好的CeO2,利用可见光可彻底催化降解溶液中的AO7。  相似文献   
113.
通过熔融扩散法合成了一系列不同含硫量的有序介孔碳(CMK-3)/硫复合材料(C x Sy).使用X射线衍射(XRD)、拉曼光谱(Raman)、比表面积测定仪(BET)、扫描电镜(SEM)、透射电镜(TEM)分析、表征和观察样品.将复合材料组装成钠硫电池,室温下测试电化学性能.循环伏安(CV)曲线结果表明,室温钠硫电池在1.61 V处有一个还原峰,对应于Na2Sx(x=2~5)的形成;在1.82 V和1.95 V分别有一个氧化峰,对应于Na2Sx(x=2~5)的分解.50%(by mass,下同)硫含量(C1S1)电极0.05C(1C=558 mA·g-1)倍率首周放电容量500 mAh·g-1,50周期循环比容量为305.6 mAh·g-1.交流阻抗数据拟合计算其表观活化能为21.83 kJ·mol-1.本研究可为室温钠硫电池多孔电极材料的研究提供一定的指导作用.  相似文献   
114.
公开号:CN103232530A公开日:2013.08.07申请人:南京工业大学摘要本发明公开了一种安来霉素A与B的分离方法。主要包括菌丝体的珠磨破碎、超滤浓缩、大孔树脂柱的吸附洗脱、浓缩干燥等。本方法通过加入有机溶剂进行珠磨,将细胞破碎与萃取集成到一步完成,同时选择了合适的大孔  相似文献   
115.
采用一锅法制备了介孔Co-Al2O3催化剂,并首次用于甲烷部分氧化制合成气反应. 结果表明,与普通浸渍法相比,一锅法制备的Co-Al2O3催化剂表现出更为优异的催化性能. 合成的介孔Co-Al2O3催化剂具有大的比表面积和孔体积,以及规整有序的六方介孔孔道,Co物种高度分散,从而导致还原后高的金属分散度,而介孔孔道对金属纳米颗粒的约束作用可有效增强金属的抗烧结能力.  相似文献   
116.
方林  张坤  陈露  吴鹏 《催化学报》2013,34(5):932-941
采用浸渍法将糠醇负载在铝改性的SBA-15介孔孔道中,经550℃不完全碳化制备了结构规整、含多苯环的中空管状硅碳复合介孔材料.结果表明,通过温和磺酸化作用可使磺酸基团成功取代在多苯环上,其酸量随着多苯环涂层厚度变化在0.38~0.84 mmol/g范围内可控调变.相比于蔗糖作为糖源的复合固体酸,所制碳多苯环-硅酸催化剂具有中空碳纳米管堆积的类似CMK-5介孔结构,以及较大的反应空间、稳定的机械性能、较高的比表面和大量可以接触的质子酸中心,因而在大分子缩醛(酮)反应中表现了良好的催化性能.  相似文献   
117.
以含巯基官能团有机硅烷修饰的介孔材料MCM-41和SBA-15为载体, 采用浸渍-氢气还原法制备了高分散和高活性的负载型Pd催化剂. X射线衍射、N2吸附-脱附和透射电子显微镜表征结果显示, 所制Pd催化剂Pd-SH-MCM-41和Pd-SH-SBA-15具有很好的长程有序结构、分布均匀的孔径、高比表面积及高度分散的Pd颗粒. 苯酚加氢反应结果表明, 以Pd-SH-MCM-41和Pd-SH-SBA-15为催化剂时, 在80℃, 1.0MPa反应1h, 苯酚转化率达99%以上, 环己酮选择性为98%. 它们的催化活性为商业Pd/C催化剂的5倍, Pd/MCM-41和Pd/SBA-15催化剂的3倍. 这可归因于介孔材料表面修饰的巯基官能团对Pd的锚定作用, 避免了Pd颗粒的团聚, 使其高度分散在介孔材料上.  相似文献   
118.
许琳琼  黄汉雄 《高分子学报》2013,(11):1357-1362
以超临界二氧化碳(Sc-CO2)为物理发泡剂,在高压釜中采用两种温度设定方式和降压对聚苯乙烯(PS)进行发泡,测试、分析发泡样品的泡孔结构、泡体密度和断面润湿性能.结果表明,仅通过降压只获得单峰的泡孔结构,而升温与降压协同作用可获得双峰的泡孔结构,大、小泡孔分别在升温和降压阶段成核形成;在发泡温度100℃、饱和温度30~70℃下制备的发泡样品中,大、小泡孔的平均直径分别为50~216和10~15μm.大泡孔的直径较大和密度较高都有利于降低样品的泡体密度,最低达0.15 g/cm3.单峰泡孔结构能在一定程度上提高样品断面的疏水性,使静态接触角(CA)从PS的本征值(87.1°)增大至138.8°;双峰泡孔结构可赋予样品断面更高的CA(155.1°),呈现超疏水特性.  相似文献   
119.
纳孔分子材料是由孤立分子通过非共价相互作用堆积形成的具有纳微孔道结构的材料.和传统共价网络孔材料相比,纳孔分子材料具有独特的溶解性,并兼具气体存储与分离,限域反应和催化等方面的潜在应用,已成为当前研究的新热点.通过着眼于新型纳孔分子材料的设计,对相关理论研究进行了综合评述,主要包括以下3个方面:(1)无论是气体吸附还是催化反应,纳孔分子材料的晶体结构预测都是先决条件,只有在纳孔分子材料的晶体结构得到准确预测的前提下,才能够定向、准确、系统地对其进行设计;(2)气体在纳孔分子材料中吸附的分子动力学研究有助于深刻理解气体吸附的微观传输扩散机制;(3)气体在纳孔分子材料中吸附的巨正则蒙特卡洛模拟有利于对设计材料的吸附性能进行直接预测,得到可以直接与实验吸附量、吸附热等信息进行比较的结果.最后,简述了理论设计新型纳孔分子材料存在的问题以及未来发展前景.  相似文献   
120.
采用软模板法制备了氮化钨-钨/掺氮有序介孔碳复合材料(WN-W/NOMC),作为一种高比表面积且价格低廉的阴极氧还原反应催化剂。通过适量添加尿素来改变复合材料中的氮含量,在掺氮量为7%(w/w)时,实验发现材料能够保持完整有序介孔结构,测试其比表面积高达835 m2·g-1,透射电子显微镜(TEM)测试结果显示其催化颗粒均匀地分散在氮掺杂有序介孔碳载体上。在O2饱和的0.1 mol·L-1 KOH溶液中测试了材料的氧还原催化性能(ORR),显示其起始电位为0.87 V(vs RHE),极限电流密度为4.49 mA·cm-2,氧还原反应的转移电子数为3.4,接近于20%(w/w)商业Pt/C的3.8,说明该材料表现出近似4电子的氧还原反应途径。研究结果表明,WN-W/NOMC的催化性能虽然稍弱于商业铂碳(0.99 V,5.1 mA·cm-2),但其具有远超铂碳的循环稳定性和耐甲醇毒化能力。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号