首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  国内免费   5篇
化学   6篇
力学   1篇
数学   1篇
物理学   4篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2017年   2篇
  2007年   1篇
  2001年   1篇
  1998年   1篇
  1995年   1篇
  1990年   1篇
  1987年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
11.
拉曼光谱设备在公安一线中正逐渐得到普及,主要用于检测易燃易爆及易制毒化学品。但在实际应用中,一线人员不会对拉曼设备进行非常准确的使用和操作,不具备专业知识条件的工作人员无法完全按照最佳条件进行检测,经常会发生离焦、偏移、采样时间过短等一系列问题,而检测结果也不可能完全符合标准测试库的算法,给最终结果比对造成非常大的影响。利用五种主流机器学习算法对实际检查、办案过程中采集到的原始数据进行学习分类,通过比较相应的准确度将最佳算法用于改善一线执法、检查过程中拉曼光谱设备的准确性。采集的数据均来自于公安部第三研究所自行研制的EVA3000型拉曼光谱仪,该光谱仪目前已在全国各省、市、地、县进行了一定的配备,一线检测人员会定期将采集的原始数据回传到EVA3000的后台管理系统。通过该管理系统,在线收集实际检查过程中产生的原始数据,以两类易制毒化学品和易燃易爆化学品为例,随机抽取已定性判定的苯乙酸、二氯甲烷、麻黄碱和硝基苯各40例共计160例,并分别利用决策树、随机森林、AdaBoost、支持向量机和人工神经网络算法各进行40,60,100,150,200,300和500次的交叉训练、预测、求取平均准确度。从实验结果可以看出,在五种学习算法中,对于实际样本的预测准确度排序大致为随机森林≈AdaBoost>决策树>SVM>人工神经网络。实际测试的结果与实验过程中的平均预测准确度大体一致。其中随机森林与AdaBoost的准确度相近,其原因在于两者的算法本质都是不断构建新的训练数据集并提高对于错误样本在下次学习中的权重,而SVM 和人工神经网络算法的本质都是基于感知器的算法。可见目前几种主流学习算法中,采用自举汇聚(bootstrap aggregating)方式的算法更适应于对实际样本的采样学习,其准确度也较高。在下一步的工作当中,将继续优化现有的算法,将其实现在后台管理系统上,并测试算法对于目前检测中无法定性物质的在线检测功能。该结果对于进一步将机器学习算法用于实际应用、在线分析,改善一线操作人员非正确使用设备对比对结果造成影响,具有重要意义。  相似文献   
12.
普朗克(Max Planck,1858—1947)生于基尔一个学术之家,其祖父是哥廷恩大学的神学教授、父亲是基尔大学的法学教授,后者于1867年转入慕尼黑大学任教。1874—1879年间,普朗克在慕尼黑大学和柏林大学修习物理(图15)。在慕尼黑大学开始学习初等物理时,普朗克跟随的是Philipp von Jolly(1809—1884)教授,一个认为物理学只有一些洞洞要修修补补的教授(曾精确测量重力加速度),因而他不鼓励普朗克学物理。普朗克回答说他没想做出什么新发现,只是想学会那些基础物理。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号