首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   164篇
  免费   56篇
  国内免费   213篇
化学   289篇
晶体学   12篇
力学   3篇
综合类   3篇
物理学   126篇
  2024年   4篇
  2023年   10篇
  2022年   10篇
  2021年   6篇
  2020年   7篇
  2019年   14篇
  2018年   10篇
  2017年   11篇
  2016年   15篇
  2015年   12篇
  2014年   18篇
  2013年   24篇
  2012年   29篇
  2011年   40篇
  2010年   16篇
  2009年   32篇
  2008年   24篇
  2007年   29篇
  2006年   27篇
  2005年   14篇
  2004年   22篇
  2003年   8篇
  2002年   8篇
  2001年   9篇
  2000年   7篇
  1999年   8篇
  1998年   7篇
  1997年   3篇
  1996年   1篇
  1995年   3篇
  1993年   1篇
  1992年   2篇
  1988年   1篇
  1986年   1篇
排序方式: 共有433条查询结果,搜索用时 15 毫秒
11.
应用高能球磨法制备Mg-x%Mg1.8La0.2Ni(x=10、20和30)纳米复合储氢材料.X射线衍射(XRD)、透射电镜(TEM)和选区电子衍射(SAED)测试表明,该复合材料具有纳米晶和非晶态混合结构的性质,吸氢温度降低,较好的吸放氢动力学性能,在423K,2.5MPa氢压的条件下,50s内即可达到最大吸氢量.  相似文献   
12.
用机械合金化法合成了Mg0.9Ti0.1Ni0.9X0.1(X=Mn, Zn, Co, Fe)系列合金. X射线衍射(XRD)结构分析表明, 用X部分替代Ni后, 促进了Mg0.9Ti0.1Ni合金的非晶化过程. 用Co和Fe部分替代Ni提高了合金的放电容量, 但却降低了合金的循环稳定性. 用Zn和Mn部分替代Ni提高了合金电极的循环寿命, 尤其是Mg0.9Ti0.1Ni0.9Zn0.1合金电极经10个充放电循环后, 其放电容量仍可达到313.8 mA·h/g. 对添加Co后的合金进行p-c-T测试发现, Mg0.9Ti0.1Ni0.9Co0.1合金的吸放氢容量明显比Mg0.9Ti0.1Ni合金高, 这与电化学所测到的结果一致.  相似文献   
13.
络合氢化物Ti-NaAlH4的制备与储氢特性   总被引:3,自引:0,他引:3  
采用Ti粉为催化剂前驱体、预处理Al粉和NaH为合成原料, 通过机械球磨-加氢方法合成出络合氢化物Ti-NaAlH4, 系统研究了球磨保护气氛、球磨时间和氢化加氢压力等制备参数对其储氢性能的影响. 结果表明, 制备方法对Ti-NaAlH4储氢特性有很大影响. 与氩气保护气氛相比, 在氢气气氛中球磨制备的复合物具有更高的吸放氢性能. 在氢气保护气氛下, 随着球磨时间从6 h增至24 h, 复合物的吸氢容量和吸氢速率先增后减, 12 h时达到最佳值, 而复合物的放氢容量和放氢速率则逐渐增高; 进一步延长球磨时间会使颗粒发生团聚, 从而导致吸氢性能下降. 随着氢化加氢压力从7.5 MPa升至13.5 MPa, 复合物的吸氢容量(质量分数)由2.83%逐渐增至4.21%. 复合物球磨后出现的Na3AlH6中间氢化物相表明, 在氢气下掺Ti球磨对NaH和Al的氢化反应起到很好的促进作用.  相似文献   
14.
Mg50Ni50非晶合金具有较高的初始放电容量(500mAh/g),有希望成为Ni-MH二次电池的负极合金材料。但较差的循环稳定性限制了它的进一步开发和应用。为此,本研究采用机械合金化方法,基于Mg侧进行元素替代,获得了四元Mg0.9-xTi0.1PdxNi(X=0.04-0.1)储氢合金。XRD和TEM分别从宏观和微观角度证实该系列合金仍为非晶态合金。本研究还发现,随着Pd含量的增加,腐蚀电流降低;合金的抗腐蚀能力提高。当Pd含量达到0.1的时候,Mg0.8Ti0.1Pd0.1Ni合金的耐蚀能力达到最大,其容量保持率也达到最高,经80次循环后放电容量仍然保持在200mAh/g以上。 AB3型La-Mg-Ni储氢合金与Mg基合金类似之处在于:具有较高的初始放电容量但循环容量保持率较低。为此,本研究将AB3型La0.7Mg0.3Ni3.5合金与具有较高循环稳定性的AB2型Ti0.17Zr0.08V0.35Cr0.1Ni0.3合金相复合,获得新型AB3-AB2复相合金。XRD研究表明复合物中La0.7Mg0.3Ni3.5和Ti0.17Zr0.08V0.35Cr0.1Ni0.3仍旧保持原有结构。扫描电镜(SEM)研究发现,复合物颗粒的平均尺寸在50μm左右。由于Ti0.17Zr0.08V0.35Cr0.1Ni0.3相的防护,复合物的耐腐蚀能力及100次循环容量保持率(62.3%)得以显著提高。  相似文献   
15.
于颖敏 《化学教育》2020,41(8):6-12
将金属元素分为主族、Ⅷ、镧系、其他d区等4个类别,综述了它们在氢气的生产、储存、氢燃料电池等3个氢能利用的主要过程中的作用。对现有研究结果的不完全统计表明,在元素周期表中除放射性金属元素之外的65种金属元素中,有46种金属元素以单质、合金、氧化物、盐等多种形式参与了氢能利用过程,包括作为载体、反应物、催化剂等,其中以铂系为代表的d区金属元素和以镧为代表的轻稀土金属元素应用最为广泛。  相似文献   
16.
AB2 型金属间化合物是新型的储氢材料 ,对 Zr V2 和 Zr Mn2 表面吸氢前后进行了紫外光电子谱( UPS)测量 .吸氢前后的差谱中 ,发现 Zr V2 吸氢后 ,结合能在 8e V左右出现较宽的吸附氢诱导的光电子谱峰 ;而 Zr Mn2 吸氢后 ,在 5e V左右有一个明显的峰 .实验结果表明 :氢在 Zr V2 表面的吸附所成M—H键的电子态的结合能比 Zr Mn2 表面上的要大 ,与 Zr V2 吸氢能力较强是一致的  相似文献   
17.
张立波  程锦荣 《计算物理》2007,24(6):740-744
采用巨正则蒙特卡罗方法模拟常温、中等压强下单壁氮化硼纳米管阵列的物理吸附储氢,重点研究压强、纳米管阵列的管径和管间距对单壁氮化硼纳米管阵列物理吸附储氢的影响.计算结果表明,氮化硼纳米管阵列的储氢性能明显优于碳纳米管阵列,在常温和中等压强下的物理吸附储氢量(质量百分数)可以达到和超过美国能源部提出的商业标准.并给出相应的理论解释.  相似文献   
18.
采用密度泛函理论方法研究了电场中H_2在LiF分子上的吸附行为.结果表明,无电场时,H_2能在Li与F原子上形成弱的物理吸附.外加电场可显著提高其吸附强度, H_2在Li/F上的吸附能由无电场时的-0.112/-0.122eV提高到场强为0.005 a. u.时的-0.122/-0.171 eV, H_2吸附在F上时更稳定.利用分子中的原子量子理论(QTAIM)方法研究了电场增强吸附的机理,表明电场促进了H_2与LiF间的电荷转移,同时使LiF及H_2极化,增强了其间的静电作用,从而提高了吸附强度.电场中LiF最多能吸附10个H_2,相应的质量密度达43.5 wt%.表明电场诱导LiF材料吸附H_2是一种具有潜力的储氢方法.  相似文献   
19.
研究电场中MgO分子与H_2的相互作用是探索MgO材料储氢性能的基础.在B3LYP/6-31G**水平上研究了电场中H2在MgO分子上的吸附行为.结果给出电场中单个H_2在Mg/O上的吸附能由无电场时-0.021/-0.099eV提高到场强为0.005a.u.时的-0.037/-0.139eV.H2吸附在O离子上时,电场效应更显著.电场中MgO分子最多能吸附10个H_2,相应的质量密度达33wt%.表明电场诱导MgO材料吸附H_2是一种具有潜力的储氢方法.通过电子结构分析讨论了电场中MgO分子储氢的机理.  相似文献   
20.
采用了密度泛函理论中的杂化密度泛函B3LYP方法,在6-31G*基组水平上对[Mg(BH_4)_2]_n(n=1-3)团簇的结构进行了优化,几何结构优化时自旋多重度取了1、3、5等多种情况进行计算.最后对最稳定结构的振动特性、成键特性、电荷特性和稳定性等进行了研究.结论表明:团簇最稳定结构易形成链状结构,其中Mg-B键长为0.210~0.253 nm,-BH_4基中靠近Mg原子处的B-H键长约为0.125 nm、远离Mg原子处的B-H键长为0.119 nm.对比团簇和晶体的光谱结构表明,-BH_4基在团簇和晶体中结构基本一致. Mg原子的自然电荷在1.687~1.757e之间,B原子的自然电荷在-0.702~-0.788e之间,H原子基本不参与电荷转移,其自然电荷在-0.094~0.070e之间.团簇中Mg原子和-BH_4基之间相互作用呈现较强的离子性,Mg(BH_4)_2团簇具有相对较高的动力学稳定性.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号