首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   0篇
  国内免费   12篇
化学   48篇
力学   2篇
物理学   9篇
  2024年   1篇
  2023年   2篇
  2022年   3篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2017年   4篇
  2016年   2篇
  2015年   4篇
  2014年   3篇
  2013年   5篇
  2012年   4篇
  2011年   1篇
  2010年   4篇
  2009年   3篇
  2008年   1篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2003年   1篇
  1988年   1篇
  1984年   1篇
  1976年   1篇
排序方式: 共有59条查询结果,搜索用时 218 毫秒
1.
Using a density-functional method that employs linear combinations of atomic orbitals as basis sets, nonlocal norm-conserving pseudopotentials and the generalized gradient approximation for exchange and correlation, we found that at 0 K the atoms of an Fe monolayer on the Ni (111) surface occupy hcp rather than fcc sites, in keeping with previous predictions made using the ab initio all-electron full-potential linearized augmented plane wave method with the local spin density approximation.  相似文献   
2.
TaqMan-分子灯标:一种新型的荧光基因检测探针   总被引:8,自引:0,他引:8  
在TaqMan及分子灯标的基础上开发了一类新型的均相荧光检测探针—— TaqMan-分子灯标(TaqMan-MB),该探针集合了分子灯标的发夹结构及TaqMan探针降 解作用的工作原理,使检测效果更好.与实时PCR仪联用,可用于靶基因的定量检 测.  相似文献   
3.
Photocatalysis has been extensively studied due to its potential ability to avoid the excessive use of chemical reagents and reduce the energy consumption by employing solar energy. Moreover, to alleviate the reduction in the membrane permeation selectivity, separation efficiency, and membrane service life caused by the emerging micro-pollutants and membrane fouling, membrane technology is often coupled with microbial, electrochemical, and catalytic processes. However, although physical/chemical cleaning and membrane module replacement can overcome the inherent limitations caused by membrane fouling and other membrane separation processes, high operating costs limit their practical applications. In this review, common preparation methods for TiO2 photocatalytic membranes are described in detail, and the main approaches to enhancing their photocatalytic performance are discussed. More importantly, the mechanism of the TiO2 photocatalytic membrane antifouling process is elucidated, and some applications of photocatalytic membranes in other areas are described. This review systematically outlines future research directions in the field of photocatalytic membrane modification, including metal and non-metal doping, fabrication of heterojunction structures, control over reaction conditions, increase in hydrophilicity, and increase in membrane porosity.  相似文献   
4.
Tian Y  Mao C 《Talanta》2005,67(3):532-537
This paper reports an improved catalytic molecular beacon. Addition of the target oligonucleotide activates a DNA enzyme (DNAzyme), which, in turn, activates multiple copies of molecular beacons (MB) and gives rise to a strong fluorescence signal. In a previous design, the activated DNAzyme could oligomerize, especially dimerize, and result in inactivation of the DNAzyme. The current design avoids this problem, upon activated by the target DNA, the DNAzyme will stay constantly active. With the improved method, a detection of 10 pM DNA has been demonstrated, which is 1000 times more sensitive than the method previously reported.  相似文献   
5.
One of the well-known ways of increasing the visible light absorption capability of semiconducting materials is cation doping. This study aims to use Gd doping to tailor the bandgap energy of K2Ta2O6 (KTO) for photocatalytic degradation of organic pollutants under visible light irradiation. Accordingly, the parent KTO and Gd-doped KTO with different Gd concentrations (K2-3xGdxTa2O6; x = 0.025, 0.05, 0.075 and 0.1 mol%) were synthesized by hydrothermal and facile ion-exchange methods, respectively. The powder XRD, FT-IR, SEM-EDS, TEM-SAED, N2 adsorption-desorption, XPS, UV–Vis DRS, PL and ESR techniques were used to investigate the effect of Gd dopant concentration on the structural and photocatalytic properties of KTO. The photocatalytic activity of these samples was investigated for the photocatalytic degradation of methylene blue (MB) dye in an aqueous solution at room temperature under visible light irradiation. The experimental results show that all Gd-doped KTO samples exhibit enhanced photocatalytic activity compared with parent KTO toward MB degradation. In particular, Gd-KTO obtained by doping of 0.075 mol% shows the highest photocatalytic activity among the Gd-doped samples and the degradation efficiency of MB was 79% after 180 min of visible light irradiation, which is approximately 1.5 times as high as that by parent KTO (53%). In addition, trapping experiments and electron spin resonance (ESR) analysis demonstrated that the hydroxyl radicals (?OH) have played a crucial role in the photocatalytic degradation of MB. The reusability and stability of Gd doped-KTO with a Gd content of 0.075 mol% against MB degradation were examined for five cycles. Based on the present study results, a visible light induced photocatalytic mechanism has been proposed for Gd0075-KTO sample.  相似文献   
6.
In this article, Z-scheme NiO/α-MoO3 p-n heterojunction is successfully synthesized by a facile hydrothermal route. The phase and nanostructures are researched through a series of characterizations, such as XRD, SEM, TEM, EDX, XPS and DRS. It is confirmed that the NiO nanoparticles are deposited homogeneously on one dimensional α-MoO3 nanobelts and p-n heterojuction is constructed at the interface of α-MoO3 and NiO. Photocatalytic activity of the as-synthesized photocatalysts is investigated by photodegradation of methylene blue (MB) under simulated solar light irradiation. Compared with bare α-MoO3, the NiO/α-MoO3 p-n heterojunction exhibits significantly improved photocatalytic activity and photostability for MB degradation. The improvement in the photocatalytic performance can be attributed to the optimization of the charge transport pathway offered by Z-scheme heterojunctions, which can promote the effective separation of electron-hole pairs. The results indicate that Z-scheme NiO/α-MoO3 p-n heterojunction is a novel and efficient photocatalyst with potential application for the removal of organic contaminant in wastewater.  相似文献   
7.
Due to the added value conferred by zinc oxide (ZnO) nanofiller, e.g., UV protection, antibacterial action, gas-barrier properties, poly(lactic acid) (PLA)–ZnO nanocomposites show increased interest for utilization as films, textile fibers, and injection molding items. The study highlights the beneficial effects of premixing ZnO in PLA under given conditions and its use as masterbatch (MB), a very promising alternative manufacturing technique. This approach allows reducing the residence time at high processing temperature of the thermo-sensitive PLA matrix in contact of ZnO nanoparticles known for their aptitude to promote degradation effects onto the polyester chains. Various PLA–ZnO MBs containing high contents of silane-treated ZnO nanoparticles (up to 40 wt.% nanofiller specifically treated with triethoxycaprylylsilane) were produced by melt-compounding using twin-screw extruders. Subsequently, the selected MBs were melt blended with pristine PLA to produce nanocomposite films containing 1–3 wt.% ZnO. By comparison to the more traditional multi-step process, the MB approach allowed the production of nanocomposites (films) having improved processing and enhanced properties: PLA chains displaying higher molecular weights, improved thermal stability, fine nanofiller distribution, and thermo-mechanical characteristic features, while the UV protection was confirmed by UV-vis spectroscopy measurements. The MB alternative is viewed as a promising flexible technique able to open new perspectives to produce more competitive multifunctional PLA–ZnO nanocomposites.  相似文献   
8.
建立了用铝基体火花源原子发射光谱仪现有通道硬件测定镁合金(MB1)中锰元素含量的方法.方法线性相关系数为0.967 6,RSD为1.66%.对8个未知样品进行了测试,结果与化学分析方法所得结果一致.  相似文献   
9.
The high affinity of GLUT5 transporter for d ‐fructose in breast cancer cells has been discussed intensely. In this contribution, high molar mass linear poly(ethylene imine) (LPEI) is functionalized with d ‐fructose moieties to combine the selectivity for the GLUT5 transporter with the delivery potential of PEI for genetic material. The four‐step synthesis of a thiol‐group bearing d ‐fructose enables the decoration of a cationic polymer backbone with d ‐fructose via thiol‐ene photoaddition. The functionalization of LPEI is confirmed by 2D NMR techniques, elemental analysis, and size exclusion chromatography. Importantly, a d ‐fructose decoration of 16% renders the polymers water‐soluble and eliminates the cytotoxicity of PEI in noncancer L929 cells, accompanied by a reduced unspecific cellular uptake of the genetic material. In contrast, the cytotoxicity as well as the cell specific uptake is increased for triple negative MDA‐MB‐231 breast cancer cells. Therefore, the introduction of d ‐fructose shows superior potential for cell targeting, which can be assumed to be GLUT5 dependent.

  相似文献   

10.
A highly efficient black TiO2-Ag photocatalytic nanocomposite, active under both UV and visible light illumination, was synthesized by decorating the surface of 25 nm TiO2 particles with Ag nanoparticles. The material was obtained via a rapid, one-pot, simple (surfactant and complexing agent free) chemical reduction method using silver nitrate and formaldehyde as a metal salt and reducing agent, respectively. The nanocomposite shows an increase of over 800% in the rate of photocatalytic methylene blue dye degradation, compared to commercial unmodified TiO2, under UV-VIS illumination. Unlike pure TiO2, the nanocomposite exhibits visible light activation, with a corresponding drop in optical reflectance from 100% to less than 10%. The photocatalytic properties were shown to be strongly enhanced by post-reduction annealing heat treatments in air, which were observed to decrease, rather than coarsen, silver particle size, and increase particle distribution. This, accompanied by a variation in the silver surface oxidation states, appear to dramatically affect the photocatalytic efficiency under both UV and visible light. This highly active photocatalyst could have wide ranging applications in water and air pollution remediation and solar fuel production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号