首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   552篇
  免费   52篇
  国内免费   12篇
化学   7篇
力学   295篇
综合类   3篇
数学   192篇
物理学   119篇
  2023年   4篇
  2022年   9篇
  2021年   5篇
  2020年   5篇
  2019年   14篇
  2018年   11篇
  2017年   20篇
  2016年   20篇
  2015年   18篇
  2014年   27篇
  2013年   45篇
  2012年   24篇
  2011年   44篇
  2010年   25篇
  2009年   45篇
  2008年   29篇
  2007年   38篇
  2006年   32篇
  2005年   27篇
  2004年   29篇
  2003年   22篇
  2002年   24篇
  2001年   17篇
  2000年   18篇
  1999年   13篇
  1998年   8篇
  1997年   13篇
  1996年   14篇
  1995年   3篇
  1994年   5篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1989年   1篇
  1982年   1篇
  1957年   1篇
排序方式: 共有616条查询结果,搜索用时 0 毫秒
521.
This paper presents results from numerical simulations of a 3-bladed horizontal axis tidal stream turbine. Initially, Reynolds Averaged Navier Stokes (RANS) k–ω Shear Stress Transport eddy-viscosity and Launder–Reece–Rodi models were used for code validation and testing of a newly implemented sliding mesh technique for an unstructured finite volume code. Wall- and blade-resolved large-eddy simulations (LES) were then performed to study the complete geometry at various tip speed ratios (TSR). Thrust and power coefficients were compared to published experimental measurements obtained from a towing tank for a range of TSR (4, 5, 6, 7, 8, 9 and 10) at a fixed hub pitch angle. A strong meandering is observed downstream of the supporting tower due to interaction between the detached tip vortices and vortex shedding from the support structure. The wake profiles and rate of recovery of velocity deficit show high sensitivity to the upstream turbulence intensities. However, the mean thrust and power coefficients were found to be less sensitive to the upstream turbulence. Comparisons between RANS and LES are also presented for the mean sectional blade pressures and mean wake velocity profiles. The paper also presents an overview of modelling and numerical issues relating to simulations for such rotating geometries.  相似文献   
522.
In the present study, the cavitating flows around marine propulsors have been numerically investigated by using a multi-phase RANS flow solver based on pseudo-compressibility and a homogeneous mixture model using unstructured meshes. To handle the relative motion between the rotating rotor and the stator, an overset mesh technique was adopted. The mass transfer rate between the liquid and vapor phases was determined by Merkle’s cavitation model based on the difference between the local and vapor pressure. The calculations were made for the P4381 marine propeller with different cavitation numbers at several advancing ratios. It was shown that the vapor structure, such as cavitation size and shape, was well captured at cavitating flow conditions. It was observed that the cavitation breakdown behavior was also well captured by the present method. Good agreement was obtained between the present results and the experiment for the integrated blade loadings, such as thrust and torque. The calculations were also made for a water-jet pump configuration at several flow conditions, and the cavitation breakdown behaviors for total headrise, power and thrust were validated by comparing the results with the experiment. The blade area covered by the cavitation and the shape of tip leakage cavitation were also compared with the experiment. Reasonable agreement between the predicted results and the experiment was obtained.  相似文献   
523.
The aim of the present work is the 3D extension of a general formalism to derive a staggered discretization for Lagrangian hydrodynamics on unstructured grids. The classical compatible discretization is used; namely, momentum equation is discretized using the fundamental concept of subcell forces. Specific internal energy equation is obtained using total energy conservation. The subcell force is derived by invoking the Galilean invariance and thermodynamic consistency. A general form of the subcell force is provided so that a cell entropy inequality is satisfied. The subcell force consists of a classical pressure term plus a tensorial viscous contribution proportional to the difference between the node velocity and the cell‐centered velocity. This cell‐centered velocity is an extra degree of freedom solved with a cell‐centered approximate Riemann solver. The second law of thermodynamics is satisfied by construction of the local positive definite subcell tensor involved in the viscous term. A particular expression of this tensor is proposed. A more accurate extension of this discretization both in time and space is also provided using a piecewise linear reconstruction of the velocity field and a predictor‐corrector time discretization. Numerical tests are presented in order to assess the efficiency of this approach in 3D. Sanity checks show that the 3D extension of the 2D approach reproduces 1D and 2D results. Finally, 3D problems such as Sedov, Noh, and Saltzman are simulated. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
524.
An artificial viscosity, originally designed for Eulerian schemes, is adapted for use in arbitrary Lagrangian–Eulerian simulations. Changes to the Eulerian model (dubbed ‘hyperviscosity’) are discussed, which enable it to work within a Lagrangian framework. New features include a velocity-weighted grid scale and a generalised filtering procedure, applicable to either structured or unstructured grids. The model employs an artificial shear viscosity for treating small-scale vorticity and an artificial bulk viscosity for shock capturing. The model is based on the Navier–Stokes form of the viscous stress tensor, including the diagonal rate-of-expansion tensor. A second-order version of the model is presented, in which Laplacian operators act on the velocity divergence and the grid-weighted strain-rate magnitude to ensure that the velocity field remains smooth at the grid scale. Unlike sound-speed-based artificial viscosities, the hyperviscosity model is compatible with the low Mach number limit. The new model outperforms a commonly used Lagrangian artificial viscosity on a variety of test problems.  相似文献   
525.
对二维弹塑性流体力学有限元计算中的非结构三角网格 ,提出了一种简单、实用的全自动网格重分方法。并在LTZ 2D程序上编制了全自动重分模块 ,重分使拉格朗日流体程序能计算包含大变形的一些问题。给出两个算例 ,圆柱体撞击 (Taylor实验 )和射流形成 ,通过网格重分数值计算结果与实验和文献结果比较 ,定性、定量均有较好的符合。  相似文献   
526.
We analyze the convergence of a continuous interior penalty (CIP) method for a singularly perturbed fourth‐order elliptic problem on a layer‐adapted mesh. On this anisotropic mesh, we prove under reasonable assumptions uniform convergence of almost order k ? 1 for finite elements of degree k ≥ 2. This result is of better order than the known robust result on standard meshes. A by‐product of our analysis is an analytic lower bound for the penalty of the symmetric CIP method. Finally, our convergence result is verified numerically. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 838–861, 2014  相似文献   
527.
It is well known that convergence rate of finite element approximation is suboptimal in the L2 norm for solving biharmonic equations when P2 or Q2 element is used. The goal of this paper is to derive a weak Galerkin (WG) P2 element with the L2 optimal convergence rate by assuming the exact solution sufficiently smooth. In addition, our new WG finite element method can be applied to general mesh such as hybrid mesh, polygonal mesh or mesh with hanging node. The numerical experiments have been conducted on different meshes including hybrid meshes with mixed of pentagon and rectangle and mixed of hexagon and triangle.  相似文献   
528.
In this paper, we propose a discrete duality finite volume (DDFV) scheme for the incompressible quasi‐Newtonian Stokes equation. The DDFV method is based on the use of discrete differential operators which satisfy some duality properties analogous to their continuous counterparts in a discrete sense. The DDFV method has a great ability to handle general geometries and meshes. In addition, every component of the velocity gradient can be reconstructed directly, which makes it suitable to deal with the nonlinear terms in the quasi‐Newtonian Stokes equation. We prove that the proposed DDFV scheme is uniquely solvable and of first‐order convergence in the discrete L2‐norms for the velocity, the strain rate tensor, and the pressure, respectively. Ample numerical tests are provided to highlight the performance of the proposed DDFV scheme and to validate the theoretical error analysis, in particular on locally refined nonconforming and polygonal meshes.  相似文献   
529.
The parallel implementation of an unstructured‐grid, three‐dimensional, semi‐implicit finite difference and finite volume model for the free surface Navier–Stokes equations (UnTRIM ) is presented and discussed. The new developments are aimed to make the code available for high‐performance computing in order to address larger, complex problems in environmental free surface flows. The parallelization is based on the mesh partitioning method and message passing and has been achieved without negatively affecting any of the advantageous properties of the serial code, such as its robustness, accuracy and efficiency. The key issue is a new, autonomous parallel streamline backtracking algorithm, which allows using semi‐Lagrangian methods in decomposed meshes without compromising the scalability of the code. The implementation has been carefully verified not only with simple, abstract test cases illustrating the application domain of the code but also with advanced, high‐resolution models presently applied for research and engineering projects. The scheme performance and accuracy aspects are researched and discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
530.
The two‐dimensional shallow water model is a hyperbolic system of equations considered well suited to simulate unsteady phenomena related to some surface wave propagation. The development of numerical schemes to correctly solve that system of equations finds naturally an initial step in two‐dimensional scalar equation, homogeneous or with source terms. We shall first provide a complete formulation of the second‐order finite volume scheme for this equation, paying special attention to the reduction of the method to first order as a particular case. The explicit first and second order in space upwind finite volume schemes are analysed to provide an understanding of the stability constraints, making emphasis in the numerical conservation and in the preservation of the positivity property of the solution when necessary in the presence of source terms. The time step requirements for stability are defined at the cell edges, related with the traditional Courant–Friedrichs–Lewy (CFL) condition. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号