首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2268篇
  免费   473篇
  国内免费   359篇
化学   1055篇
晶体学   5篇
力学   239篇
综合类   29篇
数学   993篇
物理学   779篇
  2024年   13篇
  2023年   54篇
  2022年   106篇
  2021年   118篇
  2020年   162篇
  2019年   133篇
  2018年   118篇
  2017年   113篇
  2016年   146篇
  2015年   121篇
  2014年   169篇
  2013年   209篇
  2012年   154篇
  2011年   141篇
  2010年   94篇
  2009年   114篇
  2008年   118篇
  2007年   101篇
  2006年   135篇
  2005年   89篇
  2004年   78篇
  2003年   60篇
  2002年   75篇
  2001年   67篇
  2000年   46篇
  1999年   46篇
  1998年   51篇
  1997年   45篇
  1996年   38篇
  1995年   27篇
  1994年   24篇
  1993年   17篇
  1992年   19篇
  1991年   14篇
  1990年   12篇
  1989年   14篇
  1988年   3篇
  1987年   3篇
  1986年   6篇
  1985年   5篇
  1984年   5篇
  1983年   7篇
  1982年   8篇
  1981年   3篇
  1980年   4篇
  1979年   4篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
排序方式: 共有3100条查询结果,搜索用时 15 毫秒
91.
Transition metal phosphide(TMP) based electrocatalysts possessing special crystal and electronic structures attract broad attention in the field of electrocatalysis.Immense effort is made to optimize TMP catalysts aiming to satisfy the electrochemical catalysis performance.In this work,an environmentally friendly in situ green phosphating strategy and spatial limiting effect of the RuCo precursor is employed to fabricate the ruthenium nanoclusters anchored on cobalt phosphide hollow microspheres(Ru NCs/Co2P HMs).The obtained Ru NCs/Co2P HMs electrocatalysts exhibit high hydrogen evolution reaction(HER) activity at wide pH ranges,which require an overpotential of 77 mV to achieve the current density of 10 mA/cm2 in 0.5 mol/L H2SO4 and 118 mV in 1.0 mol/L KOH.Besides,the multifunctional Ru NCs/Co2P HMs exhibit good oxygen evolution reaction(OER) activity with an overpotential of 197 mV to reach the current density of 10 mA/cm2 in 0.5 mol/L H2SO4,which is below that of the commercial RuO2 electrocatalyst(248 mV).A two-electrode electrolyzer is assembled as well,in acid electrolyte,it achieves a current density of 10 mA/cm2 at a voltage of 1.53 V,which is superior to that of the benchmark of precious metal-based electrolyzer(1.58 V).  相似文献   
92.
Hydrated aluminium cations have been investigated as a photochemical model system with up to ten water molecules by UV action spectroscopy in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Intense photodissociation was observed starting at 4.5 eV for two to eight water molecules with loss of atomic hydrogen, molecular hydrogen and water molecules. Quantum chemical calculations for n=2 reveal that solvation shifts the intense 3s–3p excitations of Al+ into the investigated photon energy range below 5.5 eV. During the photochemical relaxation, internal conversion from S1 to T2 takes place, and photochemical hydrogen formation starts on the T2 surface, which passes through a conical intersection, changing to T1. On this triplet surface, the electron that was excited to the Al 3p orbital is transferred to a coordinated water molecule, which dissociates into a hydroxide ion and a hydrogen atom. If the system remains in the triplet state, this hydrogen radical is lost directly. If the system returns to singlet multiplicity, the reaction may be reversed, with recombination with the hydroxide moiety and electron transfer back to aluminium, resulting in water evaporation. Alternatively, the hydrogen radical can attack the intact water molecule, forming molecular hydrogen and aluminium dihydroxide. Photodissociation is observed for up to n=8. Clusters with n=9 or 10 occur exclusively as HAlOH+(H2O)n-1 and are transparent in the investigated energy range. For n=4–8, a mixture of Al+(H2O)n and HAlOH+(H2O)n-1 is present in the experiment.  相似文献   
93.
Photoelectrochemical(PEC) technology is considered to be a promising approach for solar-driven hydrogen production with zero emissions. Bismuth vanadate(BiVO_4) is a kind of photocatalytic material with strong photoactivity in the visible light region and appropriate band gap for PEC water splitting.However, the solar-to-hydrogen efficiency(STH) of BiVO_4 is far away from the 10% target needed for practical application due to its poor charge separation ability. Therefore, this review attempts to summarize the strategies for improving the photocurrent density and especially hydrogen production of BiVO_4 materials through PEC techniques in the last three years, such as doping nonmetal and metal elements, depositing noble metals, constructing heterojunctions, coupling with carbon and metalorganic framework(MOF) materials to further enhance the PEC performance of BiVO_4 photoanode. This review aims to serve as a general guideline to fabricate highly efficient BiVO_4-based materials for PEC water splitting.  相似文献   
94.
《中国化学快报》2021,32(8):2484-2488
Electrochemical water splitting is a facile and effective route to generate pure hydrogen and oxygen.However,the sluggish kinetics of hydrogen evolution reaction(HER) and especially oxygen evolution reaction(OER) hinder the water splitting efficiency.Meanwhile,the high-cost of noble-metal catalysts limit their actual application.It is thus highly urgent to exploit an economical and earthabundant bifunctional HER and OER electrocatalyst to simplify procedure and reduce cost.Herein,we synthesize the three-dimensionally ordered macro-/mesoporous(3 DOM/m) Ni_xCo_(100-x) alloys with distinctive structure and large surface area via a dual-templating technique.Among them,the3 DOM/m Ni_(61)Co_(39) shows the lowest overpotentials of 121 mV and 241 mV at 10 mA/cm~2 for HER and OER,respectively.Furthermore,when employed for water splitting,the Ni_(61)Co_(39) only requires 1.60 V to approach 10 mA/cm2 and presents excellent stability.These encouraging performances of the Ni_(61)Co_(39)render it a promising bifunctional catalyst for overall water splitting.  相似文献   
95.
利用三态模型和含时波包法, 研究了K2分子在强飞秒泵浦-探测激光场中泵浦/探测场强、波长对光电子能谱Autler-Townes(AT)分裂的影响.通过分别改变两激光场的场强或者波长预测AT峰移和间距,并且首次量化了AT分裂的峰移和间距.光电子能谱在共振时显示为对称双峰,失谐时为非对称双峰。AT分裂间距随泵浦场强增大而增大,但不因探测场强改变而改变.  相似文献   
96.
We consider the numerical approximation of the weak solutions of the two‐layer shallow‐water equations. The model under consideration is made of two usual one‐layer shallow‐water model coupled by nonconservative products. Because of the nonconservative products of the system, which couple both one‐layer shallow‐water subsystems, the usual numerical methods have to consider the full model. Of course, uncoupled numerical techniques, just involving finite volume schemes for the basic shallow‐water equations, are very attractive since they are very easy to implement and they are costless. Recently, a stable layer splitting technique was introduced [Bouchut and Morales de Luna, M2AN Math Model Numer Anal 42 (2008), 683–698]. In the same spirit, we exhibit new splitting technique, which is proved to be well balanced and non‐negative preserving. The main benefit issuing from the here derived uncoupled method is the ability to correctly approximate the solution of very severe benchmarks. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1396–1423, 2015  相似文献   
97.
We consider the locally one‐dimensional backward Euler splitting method to solve numerically the Hull and White problem for pricing European options with stochastic volatility in the presence of a mixed derivative term. We prove the first‐order convergence of the time‐splitting. The parabolic equation degenerates on the boundary x = 0 and we apply a fitted finite volume scheme to the equation to resolve the degeneracy and derive the fully discrete problem as we also investigate the discrete maximum principle. Numerical experiments illustrate the efficiency of our difference scheme. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 822–846, 2015  相似文献   
98.
Hydrogen generated through the photochemical cleavage of water using renewable solar energy is considered to be an environmentally friendly chemical fuel of the future, which neither results in air pollution nor leads to the emission of greenhouse gases. The photocatalytic materials for water cleavage are required to perform at least two fundamental functions: light harvesting of the maximal possible part of the solar energy spectrum and a catalytic function for efficient water decomposition into oxygen and hydrogen. Photocatalytic systems based on colloidal semiconductor nanocrystals offer a number of advantages in comparison with photoelectrochemical cells based on bulk electrodes: (i) a broad range of material types are available; (ii) higher efficiencies are expected due to short distance charge transport; (iii) large surface areas are beneficial for the catalytic processes; (iv) flexibility in fabrication and design which also allows for tuning of the electronic and optical properties by employing quantum confinement effects. The presence of co-catalysts on colloidal semiconductors is an important part of the overall design of the photocatalytic colloidal systems necessary to maximize the water splitting efficiency. This review article discusses the rational choice of colloidal nanoheterostructured materials based on light-harvesting II–VI semiconductor nanocrystals combined with a variety of metal and/or non-metal co-catalysts, with optimized light harvesting, charge separation, and photocatalytic functions.  相似文献   
99.
The effect of flame annealing on the water‐splitting properties of Sn decorated hematite (α‐Fe2O3) nanoflakes has been investigated. It is shown that flame annealing can yield a considerable enhancement in the maximum photocurrent under AM 1.5 (100 mW cm?2) conditions compared to classic furnace annealing treatments. Optimizing the annealing time (10 s at 1000 °C) leads to a photocurrent of 1.1 mA cm?2 at 1.23 V (vs. RHE) with a maximum value 1.6 mA cm?2 at 1.6 V (vs. RHE) in 1 M KOH. The improvement in photocurrent can be attributed to the fast direct heating that maintains the nanoscale morphology, leads to optimized Sn decoration, and minimizes detrimental substrate effects.  相似文献   
100.
Photocatalytic conversion of CO2 to reduction products, such as CO, HCOOH, HCHO, CH3OH, and CH4, is one of the most attractive propositions for producing green energy by artificial photosynthesis. Herein, we found that Ga2O3 photocatalysts exhibit high conversion of CO2. Doping of Zn species into Ga2O3 suppresses the H2 evolution derived from overall water splitting and, consequently, Zn‐doped, Ag‐modified Ga2O3 exhibits higher selectivity toward CO evolution than bare, Ag‐modified Ga2O3. We observed stoichiometric amounts of evolved O2 together with CO. Mass spectrometry clarified that the carbon source of the evolved CO is not the residual carbon species on the photocatalyst surface, but the CO2 introduced in the gas phase. Doping of the photocatalyst with Zn is expected to ease the adsorption of CO2 on the catalyst surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号