首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2265篇
  免费   473篇
  国内免费   359篇
化学   1054篇
晶体学   5篇
力学   239篇
综合类   29篇
数学   993篇
物理学   777篇
  2024年   13篇
  2023年   54篇
  2022年   103篇
  2021年   118篇
  2020年   162篇
  2019年   133篇
  2018年   118篇
  2017年   113篇
  2016年   146篇
  2015年   121篇
  2014年   169篇
  2013年   209篇
  2012年   154篇
  2011年   141篇
  2010年   94篇
  2009年   114篇
  2008年   118篇
  2007年   101篇
  2006年   135篇
  2005年   89篇
  2004年   78篇
  2003年   60篇
  2002年   75篇
  2001年   67篇
  2000年   46篇
  1999年   46篇
  1998年   51篇
  1997年   45篇
  1996年   38篇
  1995年   27篇
  1994年   24篇
  1993年   17篇
  1992年   19篇
  1991年   14篇
  1990年   12篇
  1989年   14篇
  1988年   3篇
  1987年   3篇
  1986年   6篇
  1985年   5篇
  1984年   5篇
  1983年   7篇
  1982年   8篇
  1981年   3篇
  1980年   4篇
  1979年   4篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
排序方式: 共有3097条查询结果,搜索用时 62 毫秒
81.
目前单原子催化剂的研究呈现爆发式增长, 已然成为材料科学和催化领域的明星材料和研究热点. 前期报道的单原子催化剂研究主要针对某一个应用方向进行探讨, 较少研究催化剂的双功能或多功能应用. 近年来, 为了拓展单原子催化剂在更多领域和方向的应用, 具有双功能甚至多功能的单原子催化剂的设计开发备受关注. 本文综合评述了近年来具有双功能活性的单原子催化剂的研究进展, 重点介绍了其在电化学领域中的最新应用研究. 最后, 对具有双功能活性的单原子催化剂发展研究中存在的问题进行了简要分析, 并对未来发展前景进行了展望.  相似文献   
82.
太阳能驱动的光电化学(PEC)水分解可以有效地将太阳能转化为化学能,作为解决环境排放和能源危机最具前景的途径之一,已经引起了科学界的广泛关注.PEC水分解系统由两个半反应组成:在光阳极上的析氧反应(OER)和光阴极上的析氢反应(HER).PEC系统的太阳能转化效率主要由光阳极/电解质界面的OER过程所决定,这是一个非常复杂且涉及质子偶联的多步四电子转移过程.钒酸铋(BiVO4)是应用于PEC水分解的典型且具有实际应用前景的光阳极材料之一.然而,由于不良的表面电荷转移、电荷在光阳极/电解质结面处的表面复合以及缓慢的OER动力学等因素,导致BiVO4的PEC性能受到严重限制.本文开发了一种新颖有效的解决方案,以低成本、高电导率和具有快速电荷转移能力的硫化钴装饰来提升BiVO4光阳极的PEC活性,X射线多晶衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等表征,研究结果表明CoS成功装饰于BiVO4表面.采用紫外-可见吸收光谱(UV-VisDRS)研究了BiVO4和复合光阳极CoS/BiVO4的光学性质,结果表明,与纯的BiVO4相比,CoS/BiVO4光阳极在可见光范围内光吸收能力有所增强.将制备的BiVO4和CoS/BiVO4光阳极应用于PEC分解水实验中,结果表明,相对于1.23 V可逆氢电极,在光照下,CoS/BiVO4光阳极的光电流密度显著提升,可高达3.2 m Acm-2,是纯BiVO4的2.5倍以上.与纯BiVO4相比,CoS/BiVO4光阳极的起始氧化电位显示出负向偏移0.2 V,表明析氧过电势得到有效减小.入射光子转换效率(IPCE)测试结果表明,CoS/BiVO4光阳极的入射光子转换效率在500 nm之前的可见光范围内得到明显提升,其中,CoS/BiVO4的IPCE值在380 nm处达到最大.此外,由于CoS的装饰作用,CoS/BiVO4光阳极的电荷注入效率和电荷分离效率均得到较大的提升,分别达到75.8%(相较于纯BiVO4光阳极的36.7%)和79.8%(相较于纯BiVO4光阳极的66.8%).电化学阻抗谱(EIS)测试结果表明,通过CoS的装饰,CoS/BiVO4光阳极的界面电荷转移电阻得到有效降低,证明其界面电荷转移动力学得到有效提升.光致发光光谱测试结果表明,CoS的装饰显著提高了BiVO4的光生电子-空穴对的分离效率,进一步证明BiVO4表面的CoS装饰在其PEC分解水中起着非常积极的作用.本文为通过表面修饰设计应用于PEC水分解的有效的光阳极提供了新思路.  相似文献   
83.
祁育  章福祥 《化学学报》2022,80(6):827-838
利用太阳能光催化分解水制氢是解决能源环境问题并实现太阳能有效转化和储存最有前途的技术之一, 这一“圣杯”式反应经过几十年不懈努力取得了诸多重要研究进展. 本文将综述光催化分解水制氢体系的基本概念、活性测试方法与注意事项、光催化材料种类等; 并从光催化分解水制氢的光吸收、光生电荷分离和表面催化反应等基本过程和关键科学问题的角度总结其重要研究进展, 最后对于太阳能光催化分解水制氢的挑战和潜在的发展方向进行分析和展望. 希望通过本综述的简要介绍能让刚从事光催化分解水制氢研究的青年科技人员清晰地了解掌握该领域的一些基本概念、操作规范、研究总体进展和现状等.  相似文献   
84.
High-entropy transition metal chalcogenides (HE-TMCs) are advantageous in electrocatalytic applications compared to other entropy-stabilized systems owing to the greater orbital extension and energetic match of p-orbitals in chalcogenides with d-orbitals of the transition metals providing additional space to tailor their electronic structure. The high-configurational entropy of HE-TMCs leads to stabilization of cubic rock salt, wurtzite-type and hexagonally packed 2D structures. Due to the multi-element nature of HE-TMCs, the synergy among different elements results in tunable d- and p-band positions. As a consequence, the adsorption energies of electrocatalytic reaction intermediates can be tailored to enhance catalytic performance in water splitting and CO2 reduction. Furthermore, the entropy-stabilized disordered microstructural state of the material endows HE-TMCs with improved corrosion resistance. Despite recent advances in HE-TMC electrocatalysis, challenges such as identification and synthesis of efficient HE-TMCs as well as the identification of catalytically active sites and reaction mechanisms on HE-TMCs remain to be investigated.  相似文献   
85.
Controllable tailoring of metal-free/carbon-based nanostructures tends an encouraging way to enhance the bifunctional activity of electrodes, but a great challenge owing to the sluggish kinetics of oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, a facile tempted-defects assisted fractionation strategy is presented to synthesize N, S, and O tri-doped metal-free catalyst (DE-TDAP). Due to this effective tempted-defects and heteroatoms interlinking in DE-TDAP, it delivers the lowest overpotential toward both the OER (346 mV) and HER (154 mV) at 10 mA cm?2. Remarkably, the DE-TDAP-electrode carries only a cell voltage of 1.81 V at 10 mA cm?2 for overall water splitting and long-term stability. Considerably, the density functional theory (DFT) calculation exposes that the tailored-defects in tri-doped interlinking could enhance bifunctional catalytic performance devising from lower Gibbs free energy of OER/HER intermediates on active sites. This struggle henceforth provides a perceptive understanding of the synergetic principles of heteroatom-interlinking-tailoring nanostructures in water splitting.  相似文献   
86.
Metal-organic coordination polymers (CP) have attracted the scientific attention for electrochemical water oxidation as it has the similar coordination structure like natural photosynthetic coordinated complex. However, the harsh synthesis conditions and bulky nature pose a major challenge in the field of catalysis. Herein, 3–5 nm CP particles synthesized at room temperature using aqueous solutions of Ni2+/Cu2+ and 2,5-dihydroxyterepthalic acid as precursor were applied for alkaline water and urea electrolysis. The overpotential required is only 300 mV at 10 mA cm−2 by Nano-Ni CP for water oxidation, with turnover frequency (TOF) of 21.4 s−1 which is around 8 times higher than its bulk-counterpart. Overall water and urea splitting were achieved with Nano-Cu (−) ∥ Nano-Ni (+) couple on Ni foam at 1.69 and 1.52 V to achieve 10 mA cm−2, respectively. High electrochemical surface area (ECSA), high TOF, and enhanced mass diffusion are found to be the key parameters responsible for the state-of-the-art water and urea splitting performances of nano-CPs as compared to their bulk counterparts.  相似文献   
87.
《中国化学快报》2021,32(9):2597-2616
Electrochemical overall water splitting is attracting a broad focus as a promising strategy for converting the electrical output of renewable resources into chemical fuels, specifically oxygen and hydrogen. However, the urgent challenge in water electrolysis is to search for low-cost, high-efficiency catalysts based on earth-abundant elements as an alternative to the high-cost but effective noble metal-based catalysts. The transition metal-based catalysts are more appealing than the noble metal catalysts because of its low cost, high performance and long stability. Some recent advances for the development in overall water splitting are reviewed in terms of transition metal-based oxides, carbides, phosphides, sulfides, and hybrids of their mixtures as hybrid bifunctional electrocatalysts. Concentrating on different catalytic mechanisms, recent advances in their structural design, controllable synthesis, mechanistic insight, and performance-enhancing strategies are proposed. The challenges and prospects for the future development of transition metal-based bifunctional electrocatalysts are also addressed.  相似文献   
88.
对多原子体系的量子动力学计算非常重要, 然而, 对含六原子以上的分子体系进行精确量子动力学计算仍具挑战性. 面向过程的基函数定制(PBFC)-并行迭代(PI)方法是一种高效的量子动力学方法, 已应用于对含九原子的丙二醛异构体系的氢迁移速率的精确量子计算. 本综述首先阐明了PBFC的基本思想, 之后重点回顾了PBFC-PI方法的具体内容、 该方法与其它方法的结合及其应用方面的新进展. 应用这些方法实现了对单氢迁移、 协同双氢迁移和分步双氢迁移3种类型基准体系的大规模并行计算, 有助于获得对氢迁移过程的新认识.  相似文献   
89.
染料敏化光电化学电池(DSPECs)是构建人工光合作用体系的潜在方式,其优势在于可通过优化染料结构来拓展可见光吸收范围,从根本上提高太阳能利用效率.染料敏化光阳极在受激发产生电荷分离之后,激发电子注入TiO2半导体导带,由于其导带位置比传统的可见光半导体,如BiVO4和Fe3O4等相比较负,因此理论上可以在较小的偏压下取得较大的光电转换效率,也更有利于和光阴极相耦合实现无偏压分解水.电荷传输动力学研究表明,注入到TiO2导带的电子向氧化态光敏剂和催化剂的回传是造成体系能量损失的主要原因,集中体现在光电流密度和效率的降低.目前,已经报道了多种手段来减少DSPECs光阳极表面的电子回传,包括使用带有长烷基链的锚定基团对水氧化催化剂进行修饰,在半导体表面引入电子中介体以及使用核-壳结构的基底等.其中,SnO2/TiO2基底被广泛应用在染料敏化光阳极中,这种基底可以提高光生电子的注入效率,同时两种金属氧化物之间的异质结有效抑制了电子回传,从而提高了DSPECs的光电活性.然而,核-壳结构基底需要使用原子层沉积技术来制备,所以操作相对复杂.本文基于Ru-bda(bda=2,2'-联吡啶-6,6'-二羧酸)结构的分子水氧化催化剂和带有磷酸修饰基团的三联吡啶钌通过共吸附的方式制备染料敏化光阳极,在不使用核-壳结构基底的情况下,利用吡啶衍生物对TiO2电极表面的修饰来减少电子回传.本文利用一系列吡啶衍生物作修饰负载在TiO2光阳极上(TiO2|RuP,1;RuP=Ru(4,4'-(PO3H2)2-2,2'-联吡啶)(2,2'-联吡啶)2;1=Ru(bda)(L)2,bda=2,2'-联吡啶-6,6'-二羧酸,L=(10-吡啶-4-基氧基)癸基)膦酸.在100 mW/cm2的白光照射下(λ>400 nm),TiO2|RuP,1,P1(P1=4-羟基吡啶)光阳极在0.4 V(vs.NHE)的外加偏压下获得了1 mA/cm2的光电流密度,其光电流比未修饰吡啶的光阳极增加了42%.同时,其入射光子-电流转化效率在470 nm波长的单色光光照下达到最大,为13.6%.经过吡啶衍生物所修饰的光阳极光电性能和文献中利用核-壳结构基底所制备的类似光阳极性能相当,且光电流密度随吡啶对位取代基供电性能的增强而增大.瞬态吸收光谱和电化学阻抗谱测试表明,吡啶吸附在光阳极上能有效地抑制界面上的电子回传,延长电荷分离寿命,是光电流增加的根本原因,这也表明有机小分子修饰是提高染料敏化光阳极性能的简单、有效的策略.  相似文献   
90.
光电化学分解水可将太阳能转换为绿色的氢能,为目前的能源危机和环境问题提供了一种理想的解决方案.在分解水反应中,涉及四空穴过程的产氧半反应是制约性能的关键步骤,往往需要在半导体表面沉积电催化剂以加速产氧反应动力学.因此,全面理解电催化剂在光电化学分解水体系中的作用至关重要.在目前的产氧电催化剂中,过渡金属羟基氧化物电催化剂(MOOH,M=Fe,Co,Ni)因其环保、廉价、高效以及稳定的特性,已被广泛用于半导体光阳极分解水器件中.而且,MOOH可用简单的电沉积方法沉积在光电极表面,易于大面积制备.然而,电沉积法制备的MOOH具有复杂的结构,对其作用机制的全面理解更加困难.因此,本文以电沉积MOOH修饰的硅基光阳极(n+p-Si/SiOx/Fe/FeOx/MOOH)作为模型,研究了不同电催化剂对硅光阳极光电化学产氧性能的影响.实验发现电催化剂的界面优化在电催化剂修饰的光电极中发挥着重要作用,这是因为优化的界面可以提升界面电荷传输,提供更多的催化反应活性位点以及更高的本征催化活性,从而更有利于光解水性能的提升.该项研究揭示了电催化剂在光解水器件中的作用,并为今后高效光解水器件的设计提供了一定指导.首先在多晶n+p-Si基底上热蒸镀了一层30 nm的金属Fe膜,并通过电化学活化将Fe膜表面转换为FeOx得到Fe/FeOx(记作aFe)界面层,然后利用电沉积方法制备MOOH表面修饰层,最终得到n+p-Si/SiOx/aFe:MOOH光阳极.X射线光电子能谱、拉曼光谱以及扫描电子显微镜表面元素成像的表征结果均证实电极表面由于界面层金属Fe元素的掺杂而形成了Fe1-xNixOOH.在模拟太阳光下用于光解水产氧时,n+p-Si/SiOx/aFe:NiOOH电极的起始电位为~1.01 VRHE(相对于可逆氢电极的电势),在1.23 VRHE下的光电流为38.82 mA cm-2,显著优于n+p-Si/SiOx/aFe、n+p-Si/SiOx/aFe:FeOOH以及n+p-Si/SiOx/aFe:CoOOH三个对比样品,且其稳定性达到75 h.另外,我们发现n+p-Si/SiOx/aFe:MOOH电极的光电化学产氧性能均显著高于n+p-Si/SiOx/aFe电极,且p++-Si/SiOx/aFe:MOOH的电催化产氧性能也高于p++-Si/SiOx/MOOH,不仅证明了aFe界面层对Si与MOOH层之间的界面接触作用的有效调控,而且表明双电催化剂体系(aFe:MOOH)的电催化产氧活性高于单电催化剂(MOOH).热力学分析表明,n+p-Si/SiOx/aFe:MOOH光阳极的光电压大小与其光解水产氧性能并不一致,从而排除了热力学因素对性能的关键影响.进一步从塔菲尔斜率、电化学活性表面积和电化学阻抗谱对各电极的动力学进行了分析,证明了动力学因素在上述光阳极产氧性能中的主导作用.同时发现,由于aFe:NiOOH双电催化剂具有更高的本征电催化产氧性能,提供了更多的表面活性位点以及更有效地促进了光生载流子的传输,对动力学的提升效果更显著,从而使n+p-Si/SiOx/aFe:NiOOH光阳极表现出最高的光解水产氧性能.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号