首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22557篇
  免费   2778篇
  国内免费   2150篇
化学   14007篇
晶体学   569篇
力学   982篇
综合类   131篇
数学   1657篇
物理学   10139篇
  2024年   94篇
  2023年   254篇
  2022年   608篇
  2021年   572篇
  2020年   763篇
  2019年   686篇
  2018年   687篇
  2017年   860篇
  2016年   1105篇
  2015年   969篇
  2014年   1188篇
  2013年   2148篇
  2012年   1492篇
  2011年   1747篇
  2010年   1293篇
  2009年   1511篇
  2008年   1404篇
  2007年   1513篇
  2006年   1245篇
  2005年   1028篇
  2004年   941篇
  2003年   823篇
  2002年   909篇
  2001年   551篇
  2000年   493篇
  1999年   450篇
  1998年   382篇
  1997年   269篇
  1996年   241篇
  1995年   181篇
  1994年   190篇
  1993年   128篇
  1992年   138篇
  1991年   75篇
  1990年   57篇
  1989年   47篇
  1988年   65篇
  1987年   48篇
  1986年   42篇
  1985年   48篇
  1984年   48篇
  1983年   21篇
  1982年   36篇
  1981年   28篇
  1980年   19篇
  1979年   24篇
  1978年   14篇
  1977年   11篇
  1974年   8篇
  1973年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The quantum theory of atoms in molecules (QTAIM) provides a theoretical foundation to determine the properties of functional groups through additive atomic contributions. Many studies have used QTAIM in their analyses with a variety of electronic structure methods, but it is unknown if the properties measured using one model chemistry, the combination of the electronic structure method and basis set, can be compared to those measured by another. Here, we evaluate the sensitivity of QTAIM functional group and bond critical point properties using six functionals and seven basis sets. High-level B2PLYPD3-BJ/aug-cc-pV5Z reference values are provided for 116 functional groups and the property sensitivity with respect to these values are evaluated based on absolute deviations and by assessing linear relationships. Functional group properties, including charges, dipoles, quadrupoles and volumes, were found to be mostly insensitive to choice of computational model chemistry. However, due to structural and topological inconsistencies, the 6-31G(d) basis set is not recommended for use. Bond critical point properties varied with choice of model chemistry, but models incorporating hybrid functionals and triple-ζ basis sets provided values suitable for use in regression studies.  相似文献   
992.
993.
The development of antimicrobial food packaging is needed for food preservation and quality maintenance. Silver nanoparticles (AgNPs) have been widely used as an antimicrobial agent in food packaging technologies. However, the risks associated with their potential migration into foods are a major concern. This paper comprehensively reviews the use of AgNPs in food packaging technologies. The application of AgNPs in food packaging technologies has been regulated by the United States Food and Drug Administration and the European Food Safety Authority. The addition of AgNPs into food packaging can improve their barrier, mechanical, and antibacterial properties, as well as maintain the quality of foods. Migration of AgNPs from food packaging into foods is still a concern as it has implications for human health associated with their toxicity properties. A study on the toxicological properties of AgNPs released from food packaging needs to be carried out intensively to ensure their safety before being widely implemented. Moreover, comprehensive economic evaluation to implement AgNPs in food packaging is needed as such a study is missing in the literature.  相似文献   
994.
We present the anisotropic electrical and thermal transport coefficients (electrical resistivity, magnetoresistance, thermoelectric power, thermal conductivity), the magnetic properties, the specific heat and the electronic density of states of a monocrystalline In3Ni2 intermetallic compound, representing a precious-metal-free (and noble-metal-free) intermetallic catalyst for the selective hydrogenation of α,β-unsaturated aldehydes. The investigated physical parameters were determined along three orthogonal crystal-symmetry directions of the trigonal structure, the twofold axis, the 3 axis and within the mirror plane. All the investigated tensorial and vectorial quantities show the same anisotropy, with the quantities being isotropic for the twofold direction and in the mirror plane, whereas there is small, though still significant anisotropy to the 3 direction. The In3Ni2 crystal conducts the electricity and heat somewhat less efficiently along the 3 direction than along the twofold direction and in the mirror plane, but the differences are not large, of about 20 %. In3Ni2 is a diamagnetic intermetallic compound, with a presumably simple Fermi surface and electrons as the majority charge carriers.  相似文献   
995.
Green single-crystals of the hydroxochromate(III) CaNa[Cr(OH)6] were grown under highly alkaline hydrothermal conditions at about 200 °C. The starting materials Ca(NO3)2 · 6H2O and Cr(NO3)3 · 9H2O were reacted in a mixture of water and sodium hydroxide with the molar ratio of 2.8:1. CaNa[Cr(OH)6] crystallizes in the non-centrosymmetric trigonal space group R3 with the lattice parameters a = 583.86(2) pm and c = 1428.73(6) pm [T = 100(1) K]. Characteristically, the crystals are reverse-obverse as well as inversion twins. The crystal structure is a stack of uncharged metal hydroxide layers, which can be regarded as a cation-ordered rhombohedral variant of the Mg(OH)2 (brucite) structure type. The oxidation state of chromium(III) and its coordination by hydroxide groups was confirmed by UV/Vis and IR spectroscopy, respectively. Temperature-dependent magnetic measurements revealed paramagnetic behavior with an effective moment of 3.82 μB per chromium atom. The thermal decomposition of CaNa[Cr(OH)6] takes place at about 225 °C, where the fast elimination of 1.5 equivalents of water is followed by the oxidation of chromium(III) to chromium(VI). Upon further heating to 1000 °C and 1200 °C, the intermediate decomposition products CaCrO4 and Na2CrO4 transform into the oxochromates(V) Ca5(CrO4)3O0.5 and Ca3(CrO4)2, respectively.  相似文献   
996.
Hydrogen can be utilized as an energy source; therefore, hydrogen storage has received the most appealing examination interest in recent years. The investigations of hydrogen storage applications center fundamentally around the examination of hydrogen capacity abilities of recently presented compounds. XSrH3 (X = K and Rb) compounds have been examined by density functional theory (DFT) calculations to uncover their different characteristics, as well as hydrogen capacity properties, for the first time. Studied compounds are optimized in the cubic phase, and optimized lattice constants are obtained as 4.77 and 4.99 Å for KSrH3 and RbSrH3, respectively. These hydrides have shown negative values of formation enthalpies as they are stable thermodynamically. XSrH3 might be used in hydrogen storage applications because of high gravimetric hydrogen storage densities, which are 2.33 and 1.71 wt% for KSrH3 and RbSrH3, respectively. Moreover, electronic properties confirm the semiconductor nature of these compounds having indirect band gaps of values 1.41 and 1.23 eV for KSrH3 and RbSrH3, respectively. In addition, mechanical properties from elastic constants such as Young modulus and Pugh's ratio, also have been investigated, and these compounds were found to satisfy born stability conditions. Furthermore, Pugh's ratio and Cauchy pressure show that these hydrides have a brittle nature. Furthermore, thermodynamic properties such as entropy and Debye temperature have been examined using the quasiharmonic Debye model for different temperatures and pressures.  相似文献   
997.
998.
999.
We study the structural, electronic, and magnetic properties of monolayer α-PbO0.875A0.125 (A = N, F), which are calculated using first principles. As a result, N doping induces local ferromagnetism centered at the N2− site, originating from the spin-down N 2p valence states. On the other hand, F doping induces nonmagnetism and induces ab-plane deformation, where F receives one electron to its nearest-neighboring Pb1.75+ ions. N doping redshifts the bandgap of the undoped system and transforms it to be indirect, while F doping blueshifts the bandgap through the Burstein-Moss effect. The hybridization of Pb 6p and O 2p orbitals is stronger near the A site than that of the crystal structure edge. Our result shows new insights, predicting possible experimental results for future functional device applications.  相似文献   
1000.
The stannides RE2Au3Sn6 (RE = La, Ce, Pr, Nd, Sm) were synthesized from the elements by arc-melting. Small single crystals were grown by annealing samples in sealed tantalum tubes in an induction furnace with a special annealing sequence. The polycrystalline phases were characterized through their X-ray powder diffraction pattern. The structures of Ce2Au3Sn6, Pr2Au3Sn6, and Nd2Au3Sn6 were refined from single-crystal X-ray diffractometer data. The RE2Au3Sn6 stannides crystallize with the orthorhombic La2Zn3Ge6 type, space group Cmcm. The basic structural building units are Au1@Sn4 tetrahedra and Au2@Sn5 square pyramids. These units are condensed to layers and the structure can be described by a simple stacking of tetrahedral and pyramidal layers with the rare earth cations in between. Temperature dependent susceptibility studies indicate that all rare earth atoms are in the trivalent oxidation state, as their effective magnetic moments match the expected values of the free RE3+ ions. Pr2Au3Sn6 and Nd2Au3Sn6 exhibit antiferromagnetic ordering at TN = 6.3(1) and 6.7(1) K. Investigations of the electrical resistivity of La2Au3Sn6 and Ce2Au3Sn6 confirmed that these compounds are metallic, for La2Au3Sn6 a lower resistivity was observed, in line with the absence of screening unpaired electrons. 119Sn Mössbauer spectra for La2Au3Sn6, Ce2Au3Sn6, Pr2Au3Sn6 and Nd2Au3Sn6 show a complex superposition of three sub-spectra which can be differentiated through their distinctly different quadrupole splitting parameters. The isomer shifts (1.87 to 2.22 mm · s–1) indicate significant s electron density at the tin nuclei.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号