首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14648篇
  免费   2879篇
  国内免费   2151篇
化学   9163篇
晶体学   256篇
力学   1832篇
综合类   154篇
数学   1650篇
物理学   6623篇
  2024年   34篇
  2023年   196篇
  2022年   478篇
  2021年   419篇
  2020年   584篇
  2019年   493篇
  2018年   506篇
  2017年   576篇
  2016年   747篇
  2015年   663篇
  2014年   927篇
  2013年   1481篇
  2012年   1038篇
  2011年   1003篇
  2010年   837篇
  2009年   889篇
  2008年   928篇
  2007年   990篇
  2006年   861篇
  2005年   749篇
  2004年   691篇
  2003年   642篇
  2002年   486篇
  2001年   469篇
  2000年   460篇
  1999年   366篇
  1998年   357篇
  1997年   269篇
  1996年   254篇
  1995年   214篇
  1994年   214篇
  1993年   157篇
  1992年   138篇
  1991年   96篇
  1990年   69篇
  1989年   70篇
  1988年   60篇
  1987年   43篇
  1986年   45篇
  1985年   35篇
  1984年   32篇
  1983年   8篇
  1982年   29篇
  1981年   10篇
  1980年   17篇
  1979年   13篇
  1978年   11篇
  1973年   5篇
  1971年   3篇
  1957年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
We demonstrate a simple route to fabricating copper circuit patterns on the surface of polyimide film. The copper pattern can be obtained in three steps: 1) Formation of partially potassium hydroxide modified pattern via a screen‐printing process, 2) formation of macromolecular metal complex with copper, and 3) copper metallization by DMAB reduction. The morphologies of these copper patterns are determined by cross‐sectional transmission electronic microscopy (TEM), scanning electronic microscopy (SEM), and atomic force microscopy (AFM). Furthermore, the growing process of the metallic copper film is investigated. The direct patterning of copper patterns onto polyimide substrates is promising for use in electronics industry as a large‐area and low‐cost processing technique.  相似文献   
992.
A global potential energy surface (PES) corresponding to the ground state of AuH2 system has been constructed based on 22 853 ab initio energies calculated by the multireference configuration interaction method with a Davidson correction. The neural network method is used to fit the PES, and the root mean square error is only 1.87 meV. The topographical features of the novel global PES are compared with previous PES which is constructed by Zanchet et al. (Zanchet PES). The global minimum energy reaction paths on the two PESs both have a well and a barrier. Relative to the Au + H2 reactants, the energy of well is 0.316 eV on the new PES, which is 0.421 eV deeper than Zanchet PES. The calculation of Au(2S) + H2(X1Σg+) → AuH(X1Σ+) + H(2S) dynamical reaction is carried out on new PES, by the time‐dependent quantum wave packet method (TDWP) with second order split operator. The reaction probabilities, integral cross‐sections (ICSs) and differential cross‐sections are obtained from the dynamics calculation. The threshold in the reaction is about 1.46 eV, which is 0.07 eV smaller than Zanchet PES due to the different endothermic energies on the two PESs. At low collision energy (<2.3 eV), the total ICS is larger than the result obtained on Zanchet PES, which can be attributed to the difference of the wells and endothermic energies.  相似文献   
993.
We study the H and H survival probabilities during collisions with Cu(100) and Cu(111) surfaces, at energies ranging from 0.5 to 5 keV and exit angles ranging from 20° to 90°. Calculations are performed with the Wave‐Packet Propagation method adapted to ion‐surface interactions. The projectile survival probability depends on the perpendicular velocity and the copper face being investigated. Projectile's interaction time with the surface and the distance of closest approach are important factors that influence the survival. The H survival on Cu(100) is much smaller than on Cu(111) but only at low velocities, while becoming higher or comparable to Cu(111) for higher velocities. For very fast collisions, the copper surface behaves like a jellium, and the electron involved in charge transfer does not “feel” the particularities of the surface band structure anymore. While the H survival on Cu(100) seems to not depend on energy and exit angle, the H survival on Cu(111) is both energy and angle dependent, and it is smaller. The study of partial density of states indicates that strong atom‐surface interactions at short distances and the role played by surface states are important factors in determining the neutral fractions obtained after scattering.  相似文献   
994.
Ab initio study of the adiabatic potential energy surface (PES) for 1,2,3-trifluorobenzene cation-radical was carried out by the ROHF, UHF, MCSCF, MP2, and DFT (B3LYP) methods with the 6-31G* basis set. The PES in question is a pseudorotation surface at all calculation levels. The pseudorotation barrier height does not exceed 3.2 kcal/mol, suggesting a possibility for its manifestations in experimental EPR spectra.  相似文献   
995.
引言我们曾研究了金属镍,铜,钛,钨,铝,铁,银,铂,钼等和非金属硅与石墨及ⅢA—VA与ⅡB—ⅥA化合物晶体等的弛豫、重构和吸附表而的60多个表面结构。本文报道研究Ag(100)c(2×2)—C1表面的结果。Zanazzi和Jona观测了Ag(100)c(2×2)—C1表面结构的21束LEED谱,并采用层—KKR(Korring—Kohn—Rostocker)法,对清洁的Ag(100)表面吸附C1原子时假设了4种结构模型。经理论计算与观测值的比较,提出了C1原子的单层吸附和C1原子与Ag原子  相似文献   
996.

Fabrication of gold nano‐patterns has been demonstrated employing surface relief structures created on films of an azobenzene‐functionalized polymer as templates. The surface relief templates were photoinscribed on the azopolymer films in one‐step with two laser beams. Thin layers of gold were over‐coated on the polymer templates by thermal evaporation. Gold lines of a few hundred nanometer width were successfully fabricated by pyrolyzing the azobenzene polymer. Sub‐micron gold dots were also created. The resulting gold structures exhibited the same periodicity as the polymer templates.  相似文献   
997.
We study the drainage of a near-theta solvent through densely grafted polymer layers and compare to recent notions that these layers display little permeability to solvent flow at surface separations less than a “hydrodynamic thickness.” The solvent is trans-decalin (a near-theta solvent at the experimental temperature of 24°C). The polymer is polystyrene (PS) end-attached to two opposed mica surfaces via the selective adsorption of the polyvinylpyridine (PVP) block of a PS-PVP diblock copolymer. The experimental probe was a surface forces apparatus modified to apply small-amplitude oscillatory displacements in the normal direction. Out-of-phase responses reflected viscous flow of solvent alone—the PS chains did not appear to contribute to dissipation over the oscillation frequencies studied. The value of the hydrodynamic thickness (RH) was less than the coil thickness (Lo) measured independently from the onset of surface–surface interactions in the force-distance profile, implying significant penetration of the velocity field into the polymer layer. As the surface–surface separation was reduced from 3Lo to 0.3Lo, the apparent hydrodynamic thickness (R) decreased monotonically to values R ≪ RH. Physically, this indicates that the “slip plane” moved progressively closer to the solid surfaces with decreasing surface–surface separation. This was accompanied by augmentation of the effective viscosity by a factor of up to approximately 5, indicating somewhat diminished permeability of solvent through the overlapping polymer layers. Similar results hold for the flow through surface-anchored polymers in a good solvent. It is interesting to note the strong stretching of densely end-grafted polymers in a theta solvent. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2961–2968, 1997  相似文献   
998.
Local interactions between (bio)chemicals and biological interfaces play an important role in fields ranging from surface patterning to cell toxicology. These interactions can be studied using microfluidic systems that operate in the “open space”, that is, without the need for the sealed channels and chambers commonly used in microfluidics. This emerging class of techniques localizes chemical reactions on biological interfaces or specimens without imposing significant “constraints” on samples, such as encapsulation, pre‐processing steps, or the need for scaffolds. They therefore provide new opportunities for handling, analyzing, and interacting with biological samples. The motivation for performing localized chemistry is discussed, as are the requirements imposed on localization techniques. Three classes of microfluidic systems operating in the open space, based on microelectrochemistry, multiphase transport, and hydrodynamic flow confinement of liquids are presented.  相似文献   
999.
Photolysis of organic solvent soluble aryl azide‐modified gold nanoparticles (N3‐AuNPs) with a core size of 4.6±1.6 nm results in the generation of interfacial reactive nitrene intermediates. The high reactivity of the nitrenes is utilized to tether the AuNP to the native surface of carbon nanotubes, and reduce graphene oxide and micro‐diamond powder, likely via addition to π‐conjugated carbon skeleton or insertion into the functionalities at the surface, to yield the desired hybrid material without the need for pretreatment of the surface. The AuNP‐covalent hybrid materials are robust in that they survive vigorous washing and sonication. In the absence of photolysis no attachment occurs with the same N3‐AuNP. The nanohybrid AuNP‐nanohybrid materials are characterized using a combination of TEM, powder XRD, XPS and UV/Vis and IR spectroscopies. All of the characterization studies confirm the uniform incorporation of the AuNP on the irradiated substrates.  相似文献   
1000.
《Analytical letters》2012,45(11):831-838
Abstract

The surfaces of both normal and fluoride treated human dental enamel were examined with x-ray photoelectron spectroscopy (ESCA). Using argon-ion etching to remove thin layers of enamel, subsurface layers were also analyzed. The resulting composition-depth profile showed that stannous fluoride produced a subsurface layer containing both tin and fluoride whereas fluorine was absent from the surface layer. Acid fluoride treatments, however, converted the surface to calcium fluoride which steadily decreased in concentration with depth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号