首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2811篇
  免费   384篇
  国内免费   96篇
化学   832篇
晶体学   9篇
力学   260篇
综合类   84篇
数学   1478篇
物理学   628篇
  2024年   3篇
  2023年   20篇
  2022年   151篇
  2021年   136篇
  2020年   89篇
  2019年   81篇
  2018年   75篇
  2017年   129篇
  2016年   155篇
  2015年   91篇
  2014年   139篇
  2013年   215篇
  2012年   192篇
  2011年   185篇
  2010年   131篇
  2009年   162篇
  2008年   130篇
  2007年   172篇
  2006年   147篇
  2005年   124篇
  2004年   111篇
  2003年   95篇
  2002年   83篇
  2001年   67篇
  2000年   61篇
  1999年   56篇
  1998年   48篇
  1997年   30篇
  1996年   25篇
  1995年   25篇
  1994年   20篇
  1993年   23篇
  1992年   7篇
  1991年   17篇
  1990年   12篇
  1989年   8篇
  1988年   13篇
  1987年   15篇
  1986年   8篇
  1985年   13篇
  1984年   7篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1979年   2篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1959年   2篇
  1957年   2篇
排序方式: 共有3291条查询结果,搜索用时 250 毫秒
111.
Water is an important component in living systems and deserves better understanding in chemistry and biology. However, due to the difficulty of investigating the water functions in protein structures, it is usually ignored in computational modeling, especially in the field of computer‐aided drug design. Here, using the potential of mean forces (PMFs) approach, we constructed a water PMF (wPMF) based on 3946 non‐redundant high resolution crystal structures. The extracted wPMF potential was first used to investigate the structure pattern of water and analyze the residue hydrophilicity. Then, the relationship between wPMF score and the B factor value of crystal waters was studied. It was found that wPMF agrees well with some previously reported experimental observations. In addition, the wPMF score was also tested in parallel with 3D‐RISM to measure the ability of retrieving experimentally observed waters, and showed comparable performance but with much less computational cost. In the end, we proposed a grid‐based clustering scheme together with a distance weighted wPMF score to further extend wPMF to predict the potential hydration sites of protein structure. From the test, this approach can predict the hydration site at the accuracy about 80% when the calculated score lower than ?4.0. It also allows the assessment of whether or not a given water molecule should be targeted for displacement in ligand design. Overall, the wPMF presented here provides an optional solution to many water related computational modeling problems, some of which can be highly valuable as part of a rational drug design strategy. © 2012 Wiley Periodicals, Inc.  相似文献   
112.
Understanding the interactions between proteins and ligands is critical for protein function annotations and drug discovery. We report a new sequence‐based template‐free predictor (TargetATPsite) to identify the Adenosine‐5′‐triphosphate (ATP) binding sites with machine‐learning approaches. Two steps are implemented in TargetATPsite: binding residues and pockets predictions, respectively. To predict the binding residues, a novel image sparse representation technique is proposed to encode residue evolution information treated as the input features. An ensemble classifier constructed based on support vector machines (SVM) from multiple random under‐samplings is used as the prediction model, which is effective for dealing with imbalance phenomenon between the positive and negative training samples. Compared with the existing ATP‐specific sequence‐based predictors, TargetATPsite is featured by the second step of possessing the capability of further identifying the binding pockets from the predicted binding residues through a spatial clustering algorithm. Experimental results on three benchmark datasets demonstrate the efficacy of TargetATPsite. © 2013 Wiley Periodicals, Inc.  相似文献   
113.
114.
In the present article, a dataset of 63 quinoxaline derivatives were taken for antimalarial activity and pharmacophore were developed. Atom based method was used to develop a three dimensional quantitative structure activity relationship (3D-QSAR) model. On comparison of all statistical parameters, model AHRRR23 was found to be the most effective and predictive QSAR model as it satisfied all statistical parameters of a good model. The model AHRRR23 showed an adequate R2 value for the training set 0.9446, good predictive power with Q2 of 0.6409, good F- value, low SD 0.1218 value and outstanding Pearson-R values and low RMSE 0.2779 values of the model. The docking studies also gives very good results with good RMSD values. 3D QSAR, docking and ADME studies exhibits that the developed model could be employed as a potential lead for further study as antimalarial drug.  相似文献   
115.
It is clear that the field of organocatalysis is continuously expanding during the last decades. With increasing computational capacity and new techniques, computational methods have provided a more economic approach to explore different chemical systems. This review offers a broad yet concise overview of current state-of-the-art studies that have employed novel strategies for catalyst design. The evolution of the all different theoretical approaches most commonly used within organocatalysis is discussed, from the traditional approach, manual-driven, to the most recent one, machine-driven.  相似文献   
116.
117.
118.
Birth weight is a key consequence of environmental exposures and metabolic alterations and can influence lifelong health. While a number of methods have been used to examine associations of trace element (including essential nutrients and toxic metals) concentrations or metabolite concentrations with a health outcome, birth weight, studies evaluating how the coexistence of these factors impacts birth weight are extremely limited. Here, we present a novel algorithm NETwork Clusters (NET-C), to improve the prediction of outcome by considering the interactions of features in the network and then apply this method to predict birth weight by jointly modelling trace element and cord blood metabolite data. Specifically, by using trace element and/or metabolite subnetworks as groups, we apply group lasso to estimate birth weight. We conducted statistical simulation studies to examine how both sample size and correlations between grouped features and the outcome affect prediction performance. We showed that in terms of prediction error, our proposed method outperformed other methods such as (a) group lasso with groups defined by hierarchical clustering, (b) random forest regression and (c) neural networks. We applied our method to data ascertained as part of the New Hampshire Birth Cohort Study on trace elements, metabolites and birth outcomes, adjusting for other covariates such as maternal body mass index (BMI) and enrollment age. Our proposed method can be applied to a variety of similarly structured high-dimensional datasets to predict health outcomes.  相似文献   
119.
As a liquid‐liquid partition chromatography, counter‐current chromatography has advantages in large sample loading capacity without irreversible adsorption, which has been widely applied in separation and purification fields. The main factors, including partition coefficient, two‐phase solvent systems, apparatus, and operating parameters greatly affect the separation process of counter‐current chromatography. To promote the applications of counter‐current chromatography, it is essential to develop theoretical research to master the principles of counter‐current chromatographic separations so as to achieve predictions before laborious trials. In this article, recent progress about separation prediction methods are reviewed from a point of the steady and unsteady state of the mass transfer process of counter‐current chromatography and its mass transfer characteristics, and then it is divided into three aspects: prediction of partition coefficient, modeling the thermodynamic process of counter‐current chromatography, and modeling the dynamic process of counter‐current chromatography.  相似文献   
120.
MERS-CoV was identified for the first time in Jeddah, Saudi Arabia in 2012 in a hospitalized patient. This virus subsequently spread to 27 countries with a total of 939 deaths and 2586 confirmed cases and now has become a serious concern globally. Camels are well known for the transmission of the virus to the human population. In this report, we have discussed the prediction, designing, and evaluation of potential siRNA targeting the ORF1ab gene for the inhibition of MERS-CoV replication. The online software, siDirect 2.0 was used to predict and design the siRNAs, their secondary structure and their target accessibility. ORF1ab gene folding was performed by RNAxs and RNAfold software. A total of twenty-one siRNAs were selected from 462 siRNAs according to their scoring and specificity. siRNAs were evaluated in vitro for their cytotoxicity and antiviral efficacy in Huh7 cell line. No significant cytotoxicity was observed for all siRNAs in Huh7 cells. The in vitro study showed the inhibition of viral replication by three siRNAs. The data generated in this study provide preliminary and encouraging information to evaluate the siRNAs separately as well as in combination against MERS-CoV replication in other cell lines. The prediction of siRNAs using online software resulted in the filtration and selection of potential siRNAs with high accuracy and strength. This computational approach resulted in three effective siRNAs that can be taken further to in vivo animal studies and can be used to develop safe and effective antiviral therapies for other prevalent disease-causing viruses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号