首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6258篇
  免费   572篇
  国内免费   597篇
化学   3832篇
晶体学   36篇
力学   207篇
综合类   72篇
数学   2163篇
物理学   1117篇
  2024年   7篇
  2023年   43篇
  2022年   64篇
  2021年   94篇
  2020年   156篇
  2019年   160篇
  2018年   164篇
  2017年   215篇
  2016年   181篇
  2015年   199篇
  2014年   279篇
  2013年   952篇
  2012年   266篇
  2011年   297篇
  2010年   254篇
  2009年   315篇
  2008年   337篇
  2007年   352篇
  2006年   343篇
  2005年   287篇
  2004年   272篇
  2003年   250篇
  2002年   850篇
  2001年   175篇
  2000年   181篇
  1999年   115篇
  1998年   140篇
  1997年   76篇
  1996年   86篇
  1995年   74篇
  1994年   58篇
  1993年   36篇
  1992年   28篇
  1991年   16篇
  1990年   17篇
  1989年   15篇
  1988年   16篇
  1987年   12篇
  1986年   7篇
  1985年   4篇
  1984年   9篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1979年   5篇
  1978年   3篇
  1974年   1篇
  1973年   2篇
  1968年   1篇
  1936年   1篇
排序方式: 共有7427条查询结果,搜索用时 0 毫秒
111.
J.S Yadav  Ch Srinivas 《Tetrahedron》2003,59(51):10325-10329
A new and efficient formal total synthesis of (3S,4S)-balanol, a potent protein kinase C inhibitor, was accomplished from tri-O-acetyl-d-glucal. Balanol and ophiocordin consists of a chiral hexahydro azepine-containing fragment and a benzophenone fragment. The azepine core was prepared in chiral form through intramolecular aza Wittig reaction. A triphenylphosphine mediated ring expansion process was employed to form the seven-membered nitrogen heterocycle. The aldehyde equivalent key intermediate was treated with triphenylphosphine to give the azepine core. To demonstrate the applicability of the new route, a synthesis of the balanol is described.  相似文献   
112.
A synthesis of a functionalized bicyclo[6.2.1]undecane, N-(7-hydroxymethyl-bicyclo[6.2.1]undeca-3,5,9-trien-2-yl)-4-methyl-benzenesulfonamide, is described. Starting with a [6+4] cycloaddition between cyclopentadiene and cycloheptatrienone, the final product was prepared in five steps with an overall 37% yield. The remarkable resistance to hydrolysis of an intermediate lactam was overcome by tosylating the amide and reducing with LiAlH4.  相似文献   
113.
The reactions of the cationic, diiron-bridging carbyne complexes [Fe(2)(mu-CAr)(CO)(4)(eta(8)-C(8)H(8))]BF(4) (1, Ar=C(6)H(5); 2, Ar=p-CH(3)C(6)H(4); 3, Ar=p-CF(3)C(6)H(4)) with LiN(C(6)H(5))(2) in THF at low temperature gave novel N-nucleophilic-addition products, namely, the neutral, diiron-bridging carbyne complexes [Fe(2)(mu-CAr)(CO)(4)(eta(7)-C(8)H(8)N(C(6)H(5))(2))] (4, Ar=C(6)H(5); 5, Ar=p-CH(3)C(6)H(4); 6, Ar=p-CF(3)C(6)H(4))). Cationic bridging carbyne complexes 1-3 react with (C(2)H(5))(2)NH, (iC(3)H(7))(2)NH, and (C(6)H(11))(2)NH under the same conditions with ring cleavage of the COT ligand to produce the novel diiron-bridging carbene inner salts [Fe(2)[mu-C(Ar)C(8)H(8)NR(2)](CO)(4)] (7, Ar=C(6)H(5), R=C(2)H(5); 8, Ar=p-CH(3)C(6)H(4), R=C(2)H(5); 9, Ar=p-CF(3)C(6)H(4), R=C(2)H(5); 10, Ar=C(6)H(5), R=iC(3)H(7); 11, Ar=p-CH(3)C(6)H(4), R=iC(3)H(7); 12, Ar=p-CF(3)C(6)H(4), R=iC(3)H(7); 13, Ar=C(6)H(5), R=C(6)H(11); 14, Ar=p-CH(3)C(6)H(4), R=C(6)H(11), 15, Ar=p-CF(3)C(6)H(4), R=C(6)H(11)). Piperidine reacts similarly with cationic carbyne complex 3 to afford the corresponding bridging carbene inner salt [Fe(2)[mu-C(Ar)C(8)H(8)N(CH(2))(5)](CO)(4)] (16). Compound 9 was transformed into a new diiron-bridging carbene inner salt 17, the trans isomer of 9, by heating in benzene. Unexpectedly, the reaction of C(6)H(5)NH(2) with 2 gave a novel COT iron-carbene complex [Fe(2)[=C(C(6)H(4)CH(3)-p)NHC(6)H(5)](mu-CO)(CO)(3)(eta(8)-C(8)H(8))] (18). However, the analogous reactions of 2-naphthylamine with 2 and of p-CF(3)C(6)H(4)NH(2) with 3 produce novel chelated iron-carbene complexes [Fe(2)[=C(C(6)H(4)CH(3)-p)NC(10)H(7)](CO)(4)(eta(2):eta(3):eta(2)-C(8)H(9))] (19) and [Fe(2)[=C(C(6)H(4)CF(3)-p)NC(6)H(4)CF(3)-p](CO)(4)(eta(2):eta(3):eta(2)-C(8)H(9))] (20), respectively. Compound 18 can also be transformed into the analogous chelated iron-carbene complex [Fe(2)[=C(C(6)H(4)CH(3)-p)NC(6)H(5)](CO)(4)(eta(2):eta(3):eta(2)-C(8)H(9))] (21). The structures of complexes 6, 9, 15, 17, 18, and 21 have been established by X-ray diffraction studies.  相似文献   
114.
115.
Enzymatic degradation of two lignin-based polymers (lignophenols), lignocatechol and lignocresol, prepared by selectively grafting catechol and p-cresol to Cα positions of lignin, respectively, were carried out in aqueous organic solvents. Both lignophenols showed high reactivity in the peroxidase-catalyzed oxidation. Structural analyses by NMR spectroscopies revealed that the degraded lignophenols contained aliphatic chain content, which might be mainly formed in the reduction of the intermediate initially generated by the aromatic ring cleavage. Lower amount of aromatic units in the lignophenols after degraded by peroxidase also indicted the cleavage of aromatic rings. Due to the substitution of phenols at Cα positions of lignin, the degraded lignophenols did not have carbonyl structure, which was abundant in the biodegradation products of native lignin. The two lignophenols were also degraded by Rhus vernicifera laccase. But the degree of degradation was lower than that of the degradation by peroxidase, which might be due to the low activity of laccase on the lignin moieties in lignophenols.  相似文献   
116.
A vinyl‐functionalized polyphosphate (PIOP) was synthesized by ring‐opening polymerization of 2‐isopropyl‐2‐oxo‐1,3,2‐dioxaphospholane and 2‐(2‐oxo‐1,3,2‐dioxaphosphoroyloxyethyl methacrylate) with triisobutylaluminum as an initiator. The number‐averaged molecular weight of the PIOP was 1.2 × 104. The average number of vinyl groups in the PIOP is 2.20. Transparent hydrogels were prepared by the radical polymerization of 2‐methacryroyloxyethyl phosphorylcholine with PIOP as a cross‐linking reagent. These hydrogels may have many applications in the biomedical field because of their biodegradability and biocompatibility.

Synthetic route of PIOP.  相似文献   

117.
Epoxides can be cleaved in a regio- and stereoselective manner under neutral conditions with alcohols and acetic acid in the presence of catalytic amounts of decatungstocerate(IV) ion, ([CeW10O36]8−), affording the corresponding β-alkoxy and β-acetoxy alcohols in high yields. In water, ring opening of epoxides occurs with this catalyst to produce the corresponding diols in good yields.  相似文献   
118.
Me3SiCl/Mg in HMPA was used for silylation of α,β-epoxy esters resulting in the corresponding β-silylated esters in a one pot reaction with reasonable yields.  相似文献   
119.
The first total synthesis of (±)-erythravine was achieved in thirteen steps from 3,4-dimethoxyphenethylamine using ring closing dienyne metathesis as the key step.  相似文献   
120.
The synthesis of 1-alkyl and 1-aryl-1-azacyclotetradeca-3,5,10,12-tetraynes was achieved in a stepwise approach. The key intermediate was 1,13-dibromotrideca-2,4,9,11-tetrayne (18). Reaction with methyl- (19 a), ethyl- (19 b), isopropyl- (19 c), n-butyl- (19 d), and tert-butylamine (19 e) as well as aniline (19 f) and p-methoxyaniline (19 g) gave the corresponding 14-membered tetraynes 20 a-20 g. The ring inversion process of 20 b was studied by variable temperature (1)H NMR spectroscopy. From these measurements a value of 10.6 kcal mol(-1) was calculated for DeltaG(not equal). X-ray investigations on single crystals of 20 b, 20 c, and 20 f revealed the axial position for the substituent at each nitrogen atom. For 20 b we encountered the chair conformation, for 20 c both chair and boat conformations, and for 20 f the boat conformation in the solid state. The reaction of 20 c with concentrated HCl in ethanol yielded 2,10-dichloro-6-isopropyl-6-azatricyclo[9.3.0.0(4,8)]tetradeca-1(11),2,4(8),9-tetraene (25 c). Compound 25 c was oxidized by 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) to 27 c. The structure of the latter was confirmed by X-ray investigations. The reaction of 20 c in aqueous HCl lead to the formation of 10-chloro-2-isopropyl-1,3,4,6,7,8-hexahydro-2H-benzo[g]isoquinolin-9-one (37 c). The structure of 37 c was verified by X-ray studies on single crystals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号