首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2896篇
  免费   409篇
  国内免费   189篇
化学   701篇
晶体学   7篇
力学   507篇
综合类   56篇
数学   1626篇
物理学   597篇
  2024年   7篇
  2023年   34篇
  2022年   87篇
  2021年   91篇
  2020年   114篇
  2019年   98篇
  2018年   101篇
  2017年   131篇
  2016年   132篇
  2015年   108篇
  2014年   151篇
  2013年   248篇
  2012年   141篇
  2011年   147篇
  2010年   123篇
  2009年   123篇
  2008年   139篇
  2007年   144篇
  2006年   140篇
  2005年   155篇
  2004年   135篇
  2003年   107篇
  2002年   129篇
  2001年   91篇
  2000年   104篇
  1999年   88篇
  1998年   68篇
  1997年   61篇
  1996年   42篇
  1995年   30篇
  1994年   32篇
  1993年   28篇
  1992年   14篇
  1991年   17篇
  1990年   16篇
  1989年   19篇
  1988年   13篇
  1987年   16篇
  1986年   10篇
  1985年   11篇
  1984年   10篇
  1982年   9篇
  1981年   4篇
  1980年   2篇
  1979年   3篇
  1978年   4篇
  1977年   5篇
  1975年   2篇
  1974年   4篇
  1957年   2篇
排序方式: 共有3494条查询结果,搜索用时 15 毫秒
101.
Charge heterogeneity profiling is important for the quality control (QC) of biopharmaceuticals. Because of the increasing complexity of these therapeutic entities [1], the development of alternative analytical techniques is needed. In this work, flow‐through partial‐filling affinity capillary electrophoresis (FTPFACE) has been established as a method for the analysis of a mixture of two similar monoclonal antibodies (mAbs). The addition of a specific ligand results in the complexation of one mAb in the co‐formulation, thus changing its migration time in the electric field. This allows the characterization of the charged variants of the non‐shifted mAb without interferences. Adsorption of proteins to the inner capillary wall has been circumvented by rinsing with guanidine hydrochloride before each injection. The presented FTPFACE approach requires only very small amounts of ligands and provides complete comparability with a standard CZE of a single mAb.  相似文献   
102.
Dextromethorphan is a centrally acting antitussive drug, while its enantiomer levomethorphan is an illicit drug with opioid analgesic effects. As capillary electrophoresis has been proven as an ideal technique for enantiomer analysis, the present study was conducted in order to develop a capillary electrophoresis‐based limit test for levomethorphan. The analytical target profile was defined as a method that should be able to determine levomethorphan with acceptable precision and accuracy at the 0.1 % level. From initial scouting experiments, a dual selector system consisting of sulfated β‐cyclodextrin and methyl‐α‐cyclodextrin was identified. The critical process parameters were evaluated in a fractional factorial resolution IV design followed by a central composite face‐centered design and Monte Carlo simulations for defining the design space of the method. The selected working conditions consisted of a 30/40.2 cm, 50 μm id fused‐silica capillary, 30 mM sodium phosphate buffer, pH 6.5, 16 mg/mL sulfated β‐cyclodextrin, and 14 mg/mL methyl‐α‐cyclodextrin at 20°C and 20 kV. The method was validated according to ICH guideline Q2(R1) and applied to the analysis of a capsule formulation. Furthermore, the apparent binding constants between the enantiomers and the cyclodextrins as well as complex mobilities were determined to understand the migration behavior of the analytes.  相似文献   
103.
A simple, high‐throughput and highly sensitive liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) method has been developed for the simultaneous estimation of rosuvastatin and free ezetimibe. Liquid–liquid extraction was carried out using methyl‐tert butyl ether after prior acidification from 300 μL human plasma. The recovery for both the analytes and their deuterated internal standards (ISs) ranged from 95.7 to 99.8%. Rosuvastatin and ezetimibe were separated on Symmetry C18 column using acetonitrile and ammonium formate buffer, pH 3.5 (30:70, v/v) as the mobile phase. The analytes were well resolved with a resolution factor of 3.8. Detection and quantitation were performed under multiple reaction monitoring using ESI(+) for rosuvastatin (m/z 482.0 → 258.1) and ESI(−) for ezetimibe (m/z 407.9 → 271.1). A linear response function was established in the concentration ranges of 0.05–50.0 ng/mL and 0.01–10.0 ng/mL for rosuvastatin and ezetimibe, respectively, with correlation coefficient, r2 ≥ 0.9991. The IS‐normalized matrix factors for the analytes ranged from 0.963 to 1.023. The developed method was successfully used to compare the pharmacokinetics of a fixed‐dose combination tablet of rosuvastatin‐ezetimibe and co‐administered rosuvastatin and ezetimibe as separate tablets to 24 healthy subjects. The reliability of the assay was also assessed by reanalysis of 115 subject samples.  相似文献   
104.
Ab initio all‐electron computations have been carried out for Ce+ and CeF, including the electron correlation, scalar relativistic, and spin–orbit coupling effects in a quantitative manner. First, the n‐electron valence state second‐order multireference perturbation theory (NEVPT2) and spin–orbit configuration interaction (SOCI) based on the state‐averaged restricted active space multiconfigurational self‐consistent field (SA‐RASSCF) and state‐averaged complete active space multiconfigurational self‐consistent field (SA‐CASSCF) wavefunctions have been applied to evaluations of the low‐lying energy levels of Ce+ with [Xe]4f15d16s1 and [Xe]4f15d2 configurations, to test the accuracy of several all‐electron relativistic basis sets. It is shown that the mixing of quartet and doublet states is essential to reproduce the excitation energies. Then, SA‐RASSCF(CASSCF)/NEVPT2 + SOCI computations with the Sapporo(‐DKH3)‐2012‐QZP basis set were carried out to determine the energy levels of the low‐lying electronic states of CeF. The calculated excitation energies, bond length, and vibrational frequency are shown to be in good agreement with the available experimental data. © 2018 Wiley Periodicals, Inc.  相似文献   
105.
A pH and reduction dual‐stimuli‐responsive PEGDA/PAMAM injectable network hydrogel containing “acetals” as pH‐sensitive groups and “disulfides” as reducible linkages was designed and synthesized via aza‐Michael addition reaction between PAMAM and PEGDA diacrylates. The pore size and swelling ratio of hydrogels was varied from 14 ± 3 to 19 ± 4 μm and 214 ± 13 to 300 ± 19 μm, respectively, with varying ethylene glycol repeating units in diacrylates. The swelling ratio of PEGDA/PAMAM network hydrogel increased with increase in the molecular weight of PEG and with decrease in pH. The presence of different cationizable amino‐functionalities in PEGDA/PAMAM network hydrogel helped to enhance the swelling ability of hydrogel under the acidic conditions. The continuous increase in metabolically active live HeLa cells with time in MTT assay implied biocompatibility/noncytotoxicity of the synthesized PEGDA/PAMAM injectable network hydrogel. Furthermore, the prepared PEGDA/PAMAM hydrogel showed higher degradation at lower pH and at higher concentration of DTT. The burst release of doxorubicin from PEGDA/PAMAM hydrogel under the environment of the lower pH and in presence of DTT compared to the release at normal physiological pH and in absence of DTT suggested the potential ability of this model hydrogel system for targeted and selective anticancer drug release at tumor tissues. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2080–2095  相似文献   
106.
Charge transport in conjugated polymers may be governed not only by the static microstructure but also fluctuations of backbone segments. Using molecular dynamics simulations, we predict the role of side chains in the backbone dynamics for regiorandom poly(3‐alkylthiophene‐2,5‐diyl)s (P3ATs). We show that the backbone of poly(3‐dodecylthiophene‐2‐5‐diyl) (P3DDT) moves faster than that of poly(3‐hexylthiophene‐2,5‐diyl) (P3HT) as a result of the faster motion of the longer side chains. To verify our predictions, we investigated the structures and dynamics of regiorandom P3ATs with neutron scattering and solid state NMR. Measurements of spin‐lattice relaxations (T1) using NMR support our prediction of faster motion for side chain atoms that are farther away from the backbone. Using small‐angle neutron scattering (SANS), we confirmed that regiorandom P3ATs are amorphous at about 300 K, although microphase separation between the side chains and backbones is apparent. Furthermore, quasi‐elastic neutron scattering (QENS) reveals that thiophene backbone motion is enhanced as the side chain length increases from hexyl to dodecyl. The faster motion of longer side chains leads to faster backbone dynamics, which in turn may affect charge transport for conjugated polymers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1193–1202  相似文献   
107.
The transfer of retention times based on thermodynamic models between columns can aid in separation optimization and compound identification in gas chromatography. Although earlier investigations have been reported, this problem remains unsuccessfully addressed. One barrier is poor predictive accuracy when moving from a reference column or system to a new target column or system. This is attributed to challenges associated with the accurate determination of the effective geometric parameters of the columns. To overcome this, we designed least squares‐based models that account for geometric parameters of the columns and thermodynamic parameters of compounds as they partition between mobile and stationary phases. Quasi‐Newton‐based algorithms were then used to perform the numerical optimization. In this first of three parts, the model used to determine the geometric parameters of the reference column and the thermodynamic parameters of compounds subjected to separation is introduced. As will be shown, the overall approach significantly improves the predictive accuracy and transferability of thermodynamic data (and retention times) between columns of the same stationary phase chemistry. The data required for the determination of the thermodynamic parameters and retention time prediction are obtained from fast and simple experiments. The proposed model and optimization algorithms were tested and validated using simulated and experimental data.  相似文献   
108.
This is the third part of a three‐part series of papers. In Part I, we presented a method for determining the actual effective geometry of a reference column as well as the thermodynamic‐based parameters of a set of probe compounds in an in‐house mixture. Part II introduced an approach for estimating the actual effective geometry of a target column by collecting retention data of the same mixture of probe compounds on the target column and using their thermodynamic parameters, acquired on the reference column, as a bridge between both systems. Part III, presented here, demonstrates the retention time transfer and prediction from the reference column to the target column using experimental data for a separate mixture of compounds. To predict the retention time of a new compound, we first estimate its thermodynamic‐based parameters on the reference column (using geometric parameters determined previously). The compound's retention time on a second column (of previously determined geometry) is then predicted. The models and the associated optimization algorithms were tested using simulated and experimental data. The accuracy of predicted retention times shows that the proposed approach is simple, fast, and accurate for retention time transfer and prediction between gas chromatography columns.  相似文献   
109.
The removal of graffiti or over-painting requires special attention in order to not induce the surface destruction but to also address all of the important eco-compatibility concerns. Because of the necessity to avoid the use of volatile and toxic petroleum-based solvents that are common in cleaning formulations, much attention has recently been paid to the design of a variety of sustainable formulations that are based on biodegradable raw materials. In the present contribution we propose a new approach to graffiti cleaning formulations that are composed of newly synthesized green solvents such as esterified plant oils, i.e., rapeseed oil (RO), sunflower oil (SO), or used cooking oil (UCO), ethyl lactate (EL), and alkylpolyglucosides (APGs) as surfactants. Oil PEG-8 ester solvents were synthesized through the direct esterification/transesterification of these oils using monobutyltin(IV) tris(2-ethylhexanoate) and titanium(IV) butoxide catalysts under mild process conditions. The most efficient formulations, determined by optimization through the response surface methodology (RSM) was more effective in comparison to the reference solvents such as the so-called Nitro solvent (denoting a mixture of toluene and acetone) and petroleum ether. Additionally, the optimal product was found to be effective in removing graffiti from glass, metal, or sandstone surfaces under open-field conditions in the city of Wrocław. The performed studies could be an invaluable tool for developing future green formulations for graffiti removal.  相似文献   
110.
A sensitive and convenient high-performance liquid chromatography-tandem mass spectrometry(HPLC-MS/MS) assay is described for the (5-HT(lB/lD)) receptor agonist sumatriptan in human plasma. Sumatriptan was recovered from plasma (81.8 +/- 6.8%) by liquid-liquid extraction. The mobile phase flow rate was 0.3 mL/min and consisted of methanol:water:formic acid (90:10:0.1, v/v/v). The analytical column (4.6 x 100 mm) was packed with Partisil C(8) (5 micro m). The standard curve was linear from 0.7 to 70.4 ng/mL (r(2) > 0.99). The lower limit of quantitation was 0.7 ng/mL. The assay was specific, accurate (percentage deviation from nominal concentrations were <15%), precise and reproducible (within- and between-day coefficients of variation <10.3%). Sumatriptan in plasma was stable over three freeze/thaw cycles and at room temperature for one day. The utility of the assay was demonstrated by following sumatriptan plasma concentrations in two healthy subjects for 8-12 h following a single 20 mg intranasal dose.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号