首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   671篇
  免费   57篇
  国内免费   33篇
化学   26篇
晶体学   1篇
力学   4篇
综合类   10篇
数学   180篇
物理学   540篇
  2023年   1篇
  2022年   12篇
  2021年   18篇
  2020年   9篇
  2019年   12篇
  2018年   10篇
  2017年   17篇
  2016年   20篇
  2015年   21篇
  2014年   28篇
  2013年   38篇
  2012年   19篇
  2011年   30篇
  2010年   25篇
  2009年   42篇
  2008年   49篇
  2007年   49篇
  2006年   45篇
  2005年   47篇
  2004年   41篇
  2003年   31篇
  2002年   31篇
  2001年   32篇
  2000年   28篇
  1999年   20篇
  1998年   34篇
  1997年   18篇
  1996年   8篇
  1995年   2篇
  1994年   6篇
  1993年   1篇
  1991年   2篇
  1990年   5篇
  1989年   1篇
  1987年   2篇
  1985年   2篇
  1984年   3篇
  1981年   1篇
  1977年   1篇
排序方式: 共有761条查询结果,搜索用时 140 毫秒
91.
The encoding process of finding the best-matched codeword (winner) for a certain input vector in image vector quantization (VQ) is computationally very expensive due to a lot of k-dimensional Euclidean distance computations. In order to speed up the VQ encoding process, it is beneficial to firstly estimate how large the Euclidean distance is between the input vector and a candidate codeword by using appropriate low dimensional features of a vector instead of an immediate Euclidean distance computation. If the estimated Euclidean distance is large enough, it implies that the current candidate codeword could not be a winner so that it can be rejected safely and thus avoid actual Euclidean distance computation. Sum (1-D), L2 norm (1-D) and partial sums (2-D) of a vector are used together as the appropriate features in this paper because they are the first three simplest features. Then, four estimations of Euclidean distance between the input vector and a codeword are connected to each other by the Cauchy–Schwarz inequality to realize codeword rejection. For typical standard images with very different details (Lena, F-16, Pepper and Baboon), the final remaining must-do actual Euclidean distance computations can be eliminated obviously and the total computational cost including all overhead can also be reduced obviously compared to the state-of-the-art EEENNS method meanwhile keeping a full search (FS) equivalent PSNR.  相似文献   
92.
Gaussian distributions on infinite-dimensional p-adic spaces are introduced and the corresponding L2-spaces of p-adic-valued square integrable functions are constructed. Representations of the infinite-dimensional Weyl group are realized in p-adic L2-spaces. There is a formal analogy with the usual Segal representation. But there is also a large topological difference: parameters of the p-adic infinite-dimensional Weyl group are defined only on some balls (these balls are additive subgroups). p-adic Hilbert space representations of quantum Hamiltonians for systems with an infinite number of degrees of freedom are constructed. Many Hamiltonians with potentials which are too singular to exist as functions over reals are realized as bounded symmetric operators in L2-spaces with respect to a p-adic Gaussian distribution.  相似文献   
93.
94.
It is well known that the Moyal bracket gives a unique deformation quantization of the canonical phase space R2n up to equivalence. In his presentation of an interesting deformation quantization of the Poisson algebra of Laurent polynomials, Ovsienko discusses the equivalences of deformation quantizations of these algebras. We show that under suitable conditions, deformation quantizations of this algebra are equivalent. Though Ovsienko showed that there exists a deformation quantization of the Poisson algebra of Laurent polynomials which is not equivalent to the Moyal product, this is not correct. We show this equivalence by two methods: a direct construction of the intertwiner via the star exponential and a more standard approach using Hochschild 2-cocycles.  相似文献   
95.
Due to its unequalled advantages, the magnetic resonance imaging (MRI) modality has truly revolutionized the diagnosis and evaluation of pathology. Because many morphological anatomic details that may not be visualized by other high tech imaging methods can now be readily shown by diagnostic MRI, it has already become the standard modality by which all other clinical imaging techniques are measured. The unique quantum physical basis of the MRI modality combined with the imaging capabilities of current computer technology has made this imaging modality a target of interdisciplinary interest for clinicians, physicists, biologists, engineers, and mathematicians. Due to the fact that MRI scanners perform corticomorphic processing, this modality is by far more complex than all the other high tech clinical imaging techniques. The purpose of this paper is to outline a phase coherent wavelet approach to Fourier transform MRI. It is based on distributional harmonic analysis on the Heisenberg nilpotent Lie group G and the associated symplectically invariant symbol calculus of pseudodifferential operators. The contour and contrast resolution of MRI scans which is controlled by symplectic filter bank processing gives the noninvasive MRI modality superiority over X-ray computed tomography (CT) in soft tissue differentiation.  相似文献   
96.
We outline a recursive method for obtaining WKB expansions of solutions of the Dirac equation in an external centrally symmetric field with a scalar-vector Lorentz structure of the interaction potentials. We obtain semiclassical formulas for radial functions in the classically allowed and forbidden regions and find conditions for matching them in passing through the turning points. We generalize the Bohr-Sommerfeld quantization rule to the relativistic case where a spin-1/2 particle interacts simultaneously with a scalar and an electrostatic external field. We obtain a general expression in the semiclassical approximation for the width of quasistationary levels, which was earlier known only for barrier-type electrostatic potentials (the Gamow formula). We show that the obtained quantization rule exactly produces the energy spectrum for Coulomb- and oscillatory-type potentials. We use an example of the funnel potential to demonstrate that the proposed version of the WKB method not only extends the possibilities for studying the spectrum of energies and wave functions analytically but also ensures an appropriate accuracy of calculations even for states with nr 1.Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 143, No. 1, pp. 83–111, April, 2005.  相似文献   
97.
A short review about nonassociative algebraic systems (mainly nonassociative algebras) and their physical applications is presented. We begin with some motivations, then we give a brief historical overview about the formation and development of the concept of hypercomplex number system and about some earlier applications. The main directions discussed are the octonionic, Lie-admissible, and quasigroup approaches. Also, some problems investigated in Tartu, the octonionic approach, Moufang–Mal'tsev symmetry, and associator quantization are discussed. This review does not pretend to be complete as the accent is placed on ideas and not on the techniques, also the references are quite sporadic (there are many authors and results mentioned in the text without references).  相似文献   
98.
A full-rank under-determined linear system of equations Ax = b has in general infinitely many possible solutions. In recent years there is a growing interest in the sparsest solution of this equation—the one with the fewest non-zero entries, measured by ∥x0. Such solutions find applications in signal and image processing, where the topic is typically referred to as “sparse representation”. Considering the columns of A as atoms of a dictionary, it is assumed that a given signal b is a linear composition of few such atoms. Recent work established that if the desired solution x is sparse enough, uniqueness of such a result is guaranteed. Also, pursuit algorithms, approximation solvers for the above problem, are guaranteed to succeed in finding this solution.Armed with these recent results, the problem can be reversed, and formed as an implied matrix factorization problem: Given a set of vectors {bi}, known to emerge from such sparse constructions, Axi = bi, with sufficiently sparse representations xi, we seek the matrix A. In this paper we present both theoretical and algorithmic studies of this problem. We establish the uniqueness of the dictionary A, depending on the quantity and nature of the set {bi}, and the sparsity of {xi}. We also describe a recently developed algorithm, the K-SVD, that practically find the matrix A, in a manner similar to the K-Means algorithm. Finally, we demonstrate this algorithm on several stylized applications in image processing.  相似文献   
99.
Hawking radiation from the black hole in Ho?ava–Lifshitz gravity is discussed by a reformulation of the tunneling method given in Banerjee and Majhi (2009) [17]. Using a density matrix technique the radiation spectrum is derived which is identical to that of a perfect black body. The temperature obtained here is proportional to the surface gravity of the black hole as occurs in usual Einstein gravity. The entropy is also derived by using the first law of black hole thermodynamics. Finally, the spectrum of entropy/area is obtained. The latter result is also discussed from the viewpoint of quasi-normal modes. Both methods lead to an equispaced entropy spectrum, although the value of the spacing is not the same. On the other hand, since the entropy is not proportional to the horizon area of the black hole, the area spectrum is not equidistant, a finding which also holds for the Einstein–Gauss–Bonnet theory.  相似文献   
100.
Various theories of Quantum Gravity predict modifications of the Heisenberg Uncertainty Principle near the Planck scale to a so-called Generalized Uncertainty Principle (GUP). In some recent papers, we showed that the GUP gives rise to corrections to the Schrödinger equation, which in turn affect all quantum mechanical Hamiltonians. In particular, by applying it to a particle in a one-dimensional box, we showed that the box length must be quantized in terms of a fundamental length (which could be the Planck length), which we interpreted as a signal of fundamental discreteness of space itself. In this Letter, we extend the above results to a relativistic particle in a rectangular as well as a spherical box, by solving the GUP-corrected Klein–Gordon and Dirac equations, and for the latter, to two and three dimensions. We again arrive at quantization of box length, area and volume and an indication of the fundamentally grainy nature of space. We discuss possible implications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号