首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   671篇
  免费   57篇
  国内免费   33篇
化学   26篇
晶体学   1篇
力学   4篇
综合类   10篇
数学   180篇
物理学   540篇
  2023年   1篇
  2022年   12篇
  2021年   18篇
  2020年   9篇
  2019年   12篇
  2018年   10篇
  2017年   17篇
  2016年   20篇
  2015年   21篇
  2014年   28篇
  2013年   38篇
  2012年   19篇
  2011年   30篇
  2010年   25篇
  2009年   42篇
  2008年   49篇
  2007年   49篇
  2006年   45篇
  2005年   47篇
  2004年   41篇
  2003年   31篇
  2002年   31篇
  2001年   32篇
  2000年   28篇
  1999年   20篇
  1998年   34篇
  1997年   18篇
  1996年   8篇
  1995年   2篇
  1994年   6篇
  1993年   1篇
  1991年   2篇
  1990年   5篇
  1989年   1篇
  1987年   2篇
  1985年   2篇
  1984年   3篇
  1981年   1篇
  1977年   1篇
排序方式: 共有761条查询结果,搜索用时 171 毫秒
751.
This article investigates the control problem for polynomial fuzzy discrete‐time systems. Signal quantization is considered in this article. To deal with this issue, a logarithmic quantizer is adopted to quantize the control signal. First, a novel method is first proposed to model polynomial fuzzy discrete‐time systems and handle the quantized control problem of the systems. Second, based on Lyapunov‐stability theory, sufficient conditions are obtained in terms of sum of squares to guarantee the asymptotical stability of the systems and satisfy a performance. Finally, a simulation example is given to illustrate the effectiveness of the proposed results. © 2014 Wiley Periodicals, Inc. Complexity 21: 325–332, 2015  相似文献   
752.
Both the Einstein–Hilbert action and the Einstein equations are discussed under the absolute vierbein formalism. Taking advantage of this form, we prove that the “kinetic energy” term, i.e., the quadratic term of time derivative term, in the Lagrangian of the Einstein–Hilbert action is non-positive definitive. And then, we present two groups of coordinate conditions that lead to positive definitive kinetic energy term in the Lagrangian, as well as the corresponding actions with positive definitive kinetic energy term, respectively. Based on the ADM decomposition, the Hamiltonian representation and canonical quantization of general relativity taking advantage of the actions with positive definitive kinetic energy term are discussed; especially, the Hamiltonian constraints with positive definitive kinetic energy term are given, respectively. Finally, we present a group of gauge conditions such that there is not any second time derivative term in the ten Einstein equations.  相似文献   
753.
The curvature-squared model of gravity, in the affine form proposed by Weyl and Yang, is deduced from a topological action in 4D. More specifically, we start from the Pontrjagin (or Euler) invariant. Using the BRST antifield formalism with a double duality gauge fixing, we obtain a consistent quantization in spaces of double dual curvature as classical instanton type background. However, exact vacuum solutions with double duality properties exhibit a ‘vacuum degeneracy’. By modifying the duality via a scale breaking term, we demonstrate that only Einstein’s equations with an induced cosmological constant emerge for the topology of the macroscopic background. This may have repercussions on the problem of ‘dark energy’ as well as ‘dark matter’ modeled by a torsion induced quintaxion.  相似文献   
754.
The notes here presented are of the modifications introduced in the application of WKB method. The problems of two- and three-dimensional harmonic oscillator potential are revisited by WKB and the new formulation of quantization rule respectively. It is found that the energy spectrum of the radial harmonic oscillator, which is reproduced exactly by the standard WKB method with the Langer modification, is also reproduced exactly without the Langer modification via the new quantization rule approach. An alternative way to obtain the non-integral Maslov index for three-dimensional harmonic oscillator is proposed.  相似文献   
755.
756.
757.
758.
Ecohydrological models vary in their sensitivity to forcing data and use available information to different extents. We focus on the impact of forcing precision on ecohydrological model behavior particularly by quantizing, or binning, time-series forcing variables. We use rate-distortion theory to quantize time-series forcing variables to different precisions. We evaluate the effect of different combinations of quantized shortwave radiation, air temperature, vapor pressure deficit, and wind speed on simulated heat and carbon fluxes for a multi-layer canopy model, which is forced and validated with eddy covariance flux tower observation data. We find that the model is more sensitive to radiation than meteorological forcing input, but model responses also vary with seasonal conditions and different combinations of quantized inputs. While any level of quantization impacts carbon flux similarly, specific levels of quantization influence heat fluxes to different degrees. This study introduces a method to optimally simplify forcing time series, often without significantly decreasing model performance, and could be applied within a sensitivity analysis framework to better understand how models use available information.  相似文献   
759.
Over the past two decades, superconducting quantum circuits have become one of the essential platforms for realizing quantum computers. The Hamiltonian of a superconducting quantum circuit system is the key to describing the dynamic evolution of the system. For this reason, various methods for analyzing the Hamiltonian of a superconducting quantum circuit system have been proposed, among which the LOM (Lumped Oscillator Model) and the EPR (Energy Participation Ratio) methods are the most popular ones. To analyze and improve the design methods of superconducting quantum chips, this paper compares the similarities and differences of the LOM and the EPR quantification methods. We verify the applicability of these two theoretical approaches to the design of 2D transmon quantum chips. By comparing the theoretically simulated results and the experimentally measured data at extremely low temperature, the errors between the theoretical calculation and observed measurement values of the two methods were summarized. Results show that the LOM method has more parameter outputs in data diversity and the qubit frequency calculation in LOM is more accurate. The reason is that in LOM more coupling between different systems are taken into consideration. These analyses would have reference significance for the design of superconducting quantum chips.  相似文献   
760.
Shape invariance is a powerful solvability condition, that allows for complete knowledge of the energy spectrum, and eigenfunctions of a system. After a short introduction into the deformation quantization formalism, this paper explores the implications of the supersymmetric quantum mechanics and shape invariance techniques to the phase space formalism. We show that shape invariance induces a new set of relations between the Wigner functions of the system, that allows for their direct calculation, once we know one of them. The simple harmonic oscillator and the Morse potential are solved as examples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号