首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16571篇
  免费   1368篇
  国内免费   780篇
化学   311篇
晶体学   9篇
力学   2384篇
综合类   107篇
数学   12874篇
物理学   3034篇
  2024年   37篇
  2023年   178篇
  2022年   131篇
  2021年   252篇
  2020年   463篇
  2019年   457篇
  2018年   476篇
  2017年   442篇
  2016年   430篇
  2015年   399篇
  2014年   697篇
  2013年   1791篇
  2012年   657篇
  2011年   986篇
  2010年   780篇
  2009年   1079篇
  2008年   1058篇
  2007年   968篇
  2006年   891篇
  2005年   679篇
  2004年   626篇
  2003年   615篇
  2002年   605篇
  2001年   491篇
  2000年   491篇
  1999年   445篇
  1998年   371篇
  1997年   353篇
  1996年   265篇
  1995年   181篇
  1994年   172篇
  1993年   143篇
  1992年   106篇
  1991年   93篇
  1990年   82篇
  1989年   64篇
  1988年   53篇
  1987年   50篇
  1986年   43篇
  1985年   65篇
  1984年   103篇
  1983年   51篇
  1982年   64篇
  1981年   65篇
  1980年   58篇
  1979年   56篇
  1978年   55篇
  1977年   33篇
  1976年   27篇
  1974年   7篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
The generalized Riemann problem (GRP) scheme for the Euler equations and gas-kinetic scheme (GKS) for the Boltzmann equation are two high resolution shock capturing schemes for fluid simulations. The difference is that one is based on the characteristics of the inviscid Euler equations and their wave interactions, and the other is based on the particle transport and collisions. The similarity between them is that both methods can use identical MUSCL-type initial reconstructions around a cell interface, and the spatial slopes on both sides of a cell interface involve in the gas evolution process and the construction of a time-dependent flux function. Although both methods have been applied successfully to the inviscid compressible flow computations, their performances have never been compared. Since both methods use the same initial reconstruction, any difference is solely coming from different underlying mechanism in their flux evaluation. Therefore, such a comparison is important to help us to understand the correspondence between physical modeling and numerical performances. Since GRP is so faithfully solving the inviscid Euler equations, the comparison can be also used to show the validity of solving the Euler equations itself. The numerical comparison shows that the GRP exhibits a slightly better computational efficiency, and has comparable accuracy with GKS for the Euler solutions in 1D case, but the GKS is more robust than GRP. For the 2D high Mach number flow simulations, the GKS is absent from the shock instability and converges to the steady state solutions faster than the GRP. The GRP has carbuncle phenomena, likes a cloud hanging over exact Riemann solvers. The GRP and GKS use different physical processes to describe the flow motion starting from a discontinuity. One is based on the assumption of equilibrium state with infinite number of particle collisions, and the other starts from the non-equilibrium free transport process to evolve into an equilibrium one through particle collisions. The different mechanism in the flux evaluation deviates their numerical performance. Through this study, we may conclude scientifically that it may NOT be valid to use the Euler equations as governing equations to construct numerical fluxes in a discretized space with limited cell resolution. To adapt the Navier–Stokes (NS) equations is NOT valid either because the NS equations describe the flow behavior on the hydrodynamic scale and have no any corresponding physics starting from a discontinuity. This fact alludes to the consistency of the Euler and Navier–Stokes equations with the continuum assumption and the necessity of a direct modeling of the physical process in the discretized space in the construction of numerical scheme when modeling very high Mach number flows. The development of numerical algorithm is similar to the modeling process in deriving the governing equations, but the control volume here cannot be shrunk to zero.  相似文献   
992.
We present artificial boundary conditions for the numerical simulation of compressible flows using high-order accurate discretizations with the discontinuous Galerkin (DG) finite element method. The construction of the proposed boundary conditions is based on characteristic analysis and applied for boundaries with arbitrary shape and orientation. Numerical experiments demonstrate that the proposed boundary treatment enables to convect out of the computational domain complex flow features with little distortion. In addition, it is shown that small-amplitude acoustic disturbances could be convected out of the computational domain, with no significant deterioration of the overall accuracy of the method. Furthermore, it was found that application of the proposed boundary treatment for viscous flow over a cylinder yields superior performance compared to simple extrapolation methods.  相似文献   
993.
A nonlinear stability method is developed for laminar two-fluid shear flows which undergo changes in the interface topology. The method is based on the nonlinear parabolized stability equations (PSE) and incorporates a scalar-based interface capturing (IC) scheme in order to track complex deformations of the fluid interface. In doing so, the formulation retains the flexibility and physical insight of instability-wave based methods, while providing hydrodynamic modeling capabilities similar to direct numerical calculations: the new formulation, referred to as the IC-PSE, can capture the nonlinear physical mechanisms responsible for generating large-scale, two-fluid structures, without incurring heavy computational costs. This approach is valid for spatially developing, laminar two-fluid shear flows which are convectively unstable, and can naturally account for the growth of finite amplitude interfacial waves, along with changes to the interfacial topology. We demonstrate the accuracy of the IC-PSE against direct Navier–Stokes calculations for two-fluid mixing layers with density and viscosity stratification. The comparisons show that the IC-PSE can predict the dynamics of the instability waves and capture the formation of Kelvin–Helmholtz vortex rolls and large scale liquid structures, at an order of magnitude less computational cost than direct calculations. The role of surface tension in the IC-PSE formulation is shown to be valid for flows in which Re/We ? 1, and the method accurately predicts the formation and non-linear evolution of flow structures in this limit. This is demonstrated for spatially developing mixing layers which lead to vortex roll-up and ligaments, prior to droplet formation. The pinch-off process itself is a high surface tension phenomenon and in not considered herein. The method also accurately captures the effect of interfacial waves on the mean flow, and the topology changes during the non-linear evolution of the two-fluid structures.  相似文献   
994.
R Ghanbari  G Rashedi 《中国物理 B》2011,20(12):127401-127401
In this paper the influence of superconducting correlations on the thermal and charge conductances in a normal metal-superconductor (NS) junction in the clean limit is studied theoretically. First we solve the quasiclassical Eilenberger equations, and using the obtained density of states we can acquire the thermal and electrical conductances for the NS junction. Then we compare the conductance in a normal region of an NS junction with that in a single layer of normal metal (N). Moreover, we study the Wiedemann-Franz (WF) law for these two cases (N and NS). From our calculations we conclude that the behaviour of the NS junction does not conform to the WF law for all temperatures. The effect of the thickness of normal metal on the thermal conductivity is also theoretically investigated in the paper.  相似文献   
995.
996.
In this study,by means of homotopy perturbation method(HPM) an approximate solution of the magnetohydrodynamic(MHD) boundary layer flow is obtained.The main feature of the HPM is that it deforms a difficult problem into a set of problems which are easier to solve.HPM produces analytical expressions for the solution to nonlinear differential equations.The obtained analytic solution is in the form of an infinite power series.In this work,the analytical solution obtained by using only two terms from HPM soluti...  相似文献   
997.
套格图桑 《物理学报》2011,60(7):70203-070203
为了获得sine-Gordon型方程的无穷序列精确解,给出三角函数型辅助方程和双曲函数型辅助方程及其Bäcklund变换和解的非线性叠加公式,借助符号计算系统Mathematica,构造了sine-Gordon方程、mKdV-sine-Gordon方程、(n+1)维双sine-Gordon方程和sinh-Gordon方程的无穷序列新精确解.其中包括无穷序列三角函数解、无穷序列双曲函数解、无穷序列Jacobi椭圆函数解和无穷序列复合型解. 关键词: sine-Gordon型方程 解的非线性叠加公式 辅助方程 无穷序列精确解  相似文献   
998.
In this work we present a new class of exact stationary solutions for two-dimensional (2D) Euler equations. Unlike already known solutions, the new ones contain complex singularities. We consider point singularities which have a vector field index greater than 1 as complex. For example, the dipole singularity is complex because its index is equal to 2. We present in explicit form a large class of exact localized stationary solutions for 2D Euler equations with a singularity whose index is equal to 3. The solutions obtained are expressed in terms of elementary functions. These solutions represent a complex singularity point surrounded by a vortex satellite structure. We also discuss the motion equation of singularities and conditions for singularity point stationarity which provide the stationarity of the complex vortex configuration.  相似文献   
999.
We consider a model for the flow of a mixture of two viscous and incompressible fluids in a two or three dimensional channel-like domain. The model consists of the Navier-Stokes equations governing the fluid velocity coupled with a convective Cahn-Hilliard equation for the relative density of atoms of one of the fluids. We prove the instability of certain stationary solutions for such a system endowed with periodic boundary conditions on elongated domains (0,2π/α0)×(0,2π) or (0,2π/α0)×(0,2π)×(0,2π/β0) for a special class of periodic body forces, provided that α0 and β0 are small enough. As a consequence, we deduce a lower bound for the Hausdorff dimension of the global attractor.  相似文献   
1000.
The movement of vortices in superconductors due to an applied current can induce a loss of perfect conductivity. Experimental observations show that material impurities can effectively prevent vortices from moving. In this paper, we provide numerical studies to investigate vortex pinning and critical currents through the use of an optimal control approach applied to a variant of the time-dependent Ginzburg-Landau model that can account for normal inclusions. The effects that the size and boundary of the sample and the number, size, shape, orientation, and location of the inclusion sites have on the critical current and vortex lattices are studied. In particular, the optimal control approach is used to determine the optimal properties of the impurities so as to maximize the critical current, i.e., the largest current that can pass through a superconductor without resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号