首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1338篇
  免费   273篇
  国内免费   112篇
化学   571篇
晶体学   21篇
力学   298篇
综合类   13篇
数学   483篇
物理学   337篇
  2024年   1篇
  2023年   3篇
  2022年   4篇
  2021年   10篇
  2020年   12篇
  2019年   62篇
  2018年   46篇
  2017年   82篇
  2016年   87篇
  2015年   103篇
  2014年   71篇
  2013年   123篇
  2012年   68篇
  2011年   80篇
  2010年   65篇
  2009年   65篇
  2008年   64篇
  2007年   71篇
  2006年   78篇
  2005年   87篇
  2004年   75篇
  2003年   76篇
  2002年   68篇
  2001年   71篇
  2000年   64篇
  1999年   78篇
  1998年   35篇
  1997年   31篇
  1996年   13篇
  1995年   3篇
  1994年   7篇
  1993年   2篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   4篇
  1986年   1篇
  1985年   2篇
  1982年   1篇
  1981年   1篇
  1979年   3篇
  1978年   1篇
排序方式: 共有1723条查询结果,搜索用时 46 毫秒
61.
This article provides a critical review of the different applications of ferrocene‐based peptides/amides in biological as well as in non‐biological systems. Ferrocene‐based peptides/amides find many applications in different fields such as materials science, medicine, organic synthesis, bio‐organometallic and biological chemistry, asymmetric catalysis, nonlinear optics, in polymer science as redox active polymers and dendrimers, in molecular recognition as biosensors and in electrochemistry). Extensive research is being done on ferrocene‐based peptides/amides but we will highlight the various applications of ferrocene‐based peptides/amides for the period 2006–2010. The main factors that govern the potential biological and non‐biological applications are an electroactive core, a conjugated linker that can act as a chromophore and lower the oxidation potential of the ferrocene part, an amino acid or peptide derivative that can interact with other molecules via hydrogen bonding or any secondary bonding, and symmetric and asymmetric substitution on the ferrocene moiety. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
62.
Sparse non‐negative matrix factorization on right side factor (SNMF/R) has better performance in feature extraction than non‐negative matrix factorization. In this work, SNMF/R was first used to separate the overlapped three‐dimensional fluorescence spectra of polycyclic aromatic hydrocarbons mixtures in pure water, lake water, and river water, respectively. It is found that the similarity coefficients between the acquired three‐dimensional spectra and the corresponding reference spectra with random initials are all above 0.80; the recognition rate of SNMF/R is higher than that of PARAFAC and non‐negative matrix factorization algorithms, especially in the case of lake water and river water samples. In addition, SNMF/R does not need any initialization scheme designing during spectra separation. These results demonstrate that SNMF/R is an appropriate algorithm to separate the overlapped fluorescence spectra of polycyclic aromatic hydrocarbons in aquatic environment accurately and effectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
63.
In this work, aniline was polymerized directly to the polyaniline‐sulfate salt without using a protonic acid. The polyaniline‐sulfate salt was prepared by emulsion polymerization, using a non ionic surfactant such as poly(ethylene glycol)–block poly(propylene glycol)‐block poly(ethylene glycol). In the aniline oxidation process, to give the polyaniline salt by ammonium persulfate, the sulfate ion is generated from ammonium persulfate and doped on to the polyaniline. Ammonium persulfate acts both as an oxidizing agent, as well as the protonating agent in the aniline polymerization process, to give the polyaniline salt. This result indicates that the effect of sulfate ion, generated by ammonium persulfate during oxidation of aniline to the polyaniline salt, may be taken into consideration in the polymerization process of aniline.  相似文献   
64.
Recent developments in computational chemistry and biology have come together in the “inside‐out” approach to enzyme engineering. Proteins have been designed to catalyze reactions not previously accelerated in nature. Some of these proteins fold and act as catalysts, but the success rate is still low. The achievements and limitations of the current technology are highlighted and contrasted to other protein engineering techniques. On its own, computational “inside‐out” design can lead to the production of catalytically active and selective proteins, but their kinetic performances fall short of natural enzymes. When combined with directed evolution, molecular dynamics simulations, and crowd‐sourced structure‐prediction approaches, however, computational designs can be significantly improved in terms of binding, turnover, and thermal stability.  相似文献   
65.

Thermally stimulated recovery (TSR) is a non‐conventional mechanical spectroscopy technique that allows to analyse in detail the relaxation processes of polymeric systems in the low frequency region. This work reviews the main aspects and potentialities of this technique. The different kinds of TSR experiments that can be performed, global and thermal sampling (TS) experiments, are described and illustrated with several examples. Also, the different methods for the determination of the thermokinetic parameters (activation energy and pre‐exponential factor) of the thermal sampling (TS) procedure are explained and compared. In this context, the compensation phenomenon, which always appears in TSR results when the studies are performed in the glass transition region of a given system, is discussed. Examples of the application of this technique to different polymeric systems during the last 20 years are provided. An emphasis will be made on the analysis of the effect of crystallinity degree and crosslink density on the TSR response. A comparison between the results (characteristic times and activation energies) obtained by different techniques, namely TSR, dynamic mechanical analysis (DMA), and differential scanning calorimetry (DSC), is made.  相似文献   
66.
The compound [2‐(aminomethyl)pyridine‐κ2N,N′][chlorido/trifluoromethanesulfonato(0.91/0.09)][(10,11‐η)‐5H‐dibenzo[a,d]cyclohepten‐5‐amine‐κN](triphenylphosphane‐κP)ruthenium(II) trifluoromethanesulfonate dichloromethane 0.91‐solvate, [Ru(CF3SO3)0.09Cl0.91(C6H8N2)(C15H13N)(C18H15P)]CF3SO3·0.91CH2Cl2, belongs to a series of RuII complexes that had been tested for transfer hydrogenation, hydrogenation of polar bonds and catalytic transfer hydrogenation. The crystal structure determination of this complex revealed disorder in the form of two different anionic ligands sharing the same coordination site, which other spectroscopic methods failed to characterize. The reduced catalytic activity of the title compound was not fully understood until the crystallographic data provided evidence for the mixed ligand species. The crystal structure clearly shows that the majority of the synthesized material has a chloride ligand present. Only a small portion of the material is the expected complex [RuII(OTf)(ampy)(η2‐tropNH2)(PPh3)]OTf, where OTf is triflate or trifluoromethanesulfonate, ampy is 2‐(aminomethyl)pyridine and tropNH2 is 5H‐dibenzo[a,d]cyclohepten‐5‐amine.  相似文献   
67.
68.
Benchmark quality geometries and interaction energies for the prereactive halogen‐bonded complexes of dihalogens and ammonia, including hypothetical astatine containing dihalogens, have been produced via explicitly correlated coupled cluster methods. The application of local electron correlation partitioning reveals dispersion, electrostatics and ionic substitutions all contribute significantly to the interaction energy, with a linear relationship between the ionic substitutions and the degree of charge transfer. Potential energy curves for H3N???ClF show that as the relative orientations of the two subunits are manipulated appreciable interactions can be found at considerably angular displaced geometries, signifying lower directionality in halogen bonding than previously supposed.  相似文献   
69.
70.
The complex series [Ru(pap)(Q)2]n ([ 1 ]n–[ 4 ]n; n=+2, +1, 0, ?1, ?2) contains four redox non‐innocent entities: one ruthenium ion, 2‐phenylazopyridine (pap), and two o‐iminoquinone moieties, Q=3,5‐di‐tert‐butyl‐N‐aryl‐1,2‐benzoquinonemonoimine (aryl=C6H5 ( 1+ ); m‐(Cl)2C6H3 ( 2+ ); m‐(OCH3)2C6H3 ( 3+ ); m‐(tBu)2C6H3 ( 4 +)). A crystal structure determination of the representative compound, [ 1 ]ClO4, established the crystallization of the ctt‐isomeric form, that is, cis and trans with respect to the mutual orientations of O and N donors of two Q ligands, and the coordinating azo N atom trans to the O donor of Q. The sensitive C? O (average: 1.299(3) Å), C? N (average: 1.346(4) Å) and intra‐ring C? C (meta; average: 1.373(4) Å) bond lengths of the coordinated iminoquinone moieties in corroboration with the N?N length (1.292(3) Å) of pap in 1 + establish [RuIII(pap0)(Q.?)2]+ as the most appropriate electronic structural form. The coupling of three spins from one low‐spin ruthenium(III) (t2g5) and two Q.? radicals in 1 +– 4 + gives a ground state with one unpaired electron on Q.?, as evident from g=1.995 radical‐type EPR signals for 1 +– 4 +. Accordingly, the DFT‐calculated Mulliken spin densities of 1 + (1.152 for two Q, Ru: ?0.179, pap: 0.031) confirm Q‐based spin. Complex ions 1 +– 4 + exhibit two near‐IR absorption bands at about λ=2000 and 920 nm in addition to intense multiple transitions covering the visible to UV regions; compounds [ 1 ]ClO4–[ 4 ]ClO4 undergo one oxidation and three separate reduction processes within ±2.0 V versus SCE. The crystal structure of the neutral (one‐electron reduced) state ( 2 ) was determined to show metal‐based reduction and an EPR signal at g=1.996. The electronic transitions of the complexes 1 n– 4 n (n=+2, +1, 0, ?1, ?2) in the UV, visible, and NIR regions, as determined by using spectroelectrochemistry, have been analyzed by TD‐DFT calculations and reveal significant low‐energy absorbance (λmax>1000 nm) for cations, anions, and neutral forms. The experimental studies in combination with DFT calculations suggest the dominant valence configurations of 1 n– 4 n in the accessible redox states to be [RuIII(pap0)(Q.?)(Q0)]2+ ( 1 2+– 4 2+)→[RuIII(pap0)(Q.?)2]+ ( 1 +– 4 +)→[RuII(pap0)(Q.?)2] ( 1 – 4 )→[RuII(pap.?)(Q.?)2]? ( 1 ?– 4 ?)→[RuIII(pap.?)(Q2?)2]2? ( 1 2?– 4 2?).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号