首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46961篇
  免费   5869篇
  国内免费   4793篇
化学   14554篇
晶体学   1011篇
力学   10400篇
综合类   655篇
数学   16070篇
物理学   14933篇
  2024年   113篇
  2023年   535篇
  2022年   984篇
  2021年   1074篇
  2020年   1348篇
  2019年   1205篇
  2018年   1196篇
  2017年   1661篇
  2016年   1888篇
  2015年   1488篇
  2014年   2375篇
  2013年   3343篇
  2012年   2907篇
  2011年   3215篇
  2010年   2728篇
  2009年   3060篇
  2008年   2996篇
  2007年   2960篇
  2006年   2713篇
  2005年   2532篇
  2004年   2190篇
  2003年   1979篇
  2002年   1736篇
  2001年   1459篇
  2000年   1359篇
  1999年   1219篇
  1998年   1144篇
  1997年   962篇
  1996年   797篇
  1995年   674篇
  1994年   630篇
  1993年   514篇
  1992年   517篇
  1991年   402篇
  1990年   319篇
  1989年   226篇
  1988年   204篇
  1987年   151篇
  1986年   103篇
  1985年   129篇
  1984年   128篇
  1983年   64篇
  1982年   81篇
  1981年   67篇
  1980年   36篇
  1979年   51篇
  1978年   44篇
  1977年   43篇
  1976年   20篇
  1974年   12篇
排序方式: 共有10000条查询结果,搜索用时 4 毫秒
41.
Thermal diffusivity, heat capacity, and density of polyvinyl chloride/polycaprolactone (PVC/PCL) blends were measured by the laser flash method, DSC, and pycnometry, respectively. The thermal conductivity of the PVC/PCL blends was determined from the results. The miscibility of the blend and crystallinity of PCL were determined by DSC. The effect of blend structure on thermal conductivity is discussed. The phase compositions of the PVC/PCL blends are of three types depending on PCL content: i.e., up to 33%, from 33 to 70%, and above 70% PCL by weight. Thermal conductivity, thermal diffusivity, and heat capacity of the PVC/PCL blends are strongly affected by the phase composition of the blend, which changes in a complicated way with PCL content. © 1994 John Wiley & Sons, Inc.  相似文献   
42.
The motion of a moored floating body under the action of wave forces, which is influenced by fluid forces, shape of the floating body and mooring forces, should be analysed as a complex coupled motion system. Especially under severe storm conditions or resonant motion of the floating body it is necessary to consider finite amplitude motions of the waves, the floating body and the mooring lines as well as non-linear interactions of these finite amplitude motions. The problem of a floating body has been studied on the basis of linear wave theory by many researchers. However, the finite amplitude motion under a correlated motion system has rarely been taken into account. This paper presents a numerical method for calculating the finite amplitude motion when a floating body is moored by non-linear mooring lines such as chains and cables under severe storm conditions.  相似文献   
43.
44.
This paper studies the application of the continuous sensitivity equation method (CSEM) for the Navier–Stokes equations in the particular case of shape parameters. Boundary conditions for shape parameters involve flow derivatives at the boundary. Thus, accurate flow gradients are critical to the success of the CSEM. A new approach is presented to extract accurate flow derivatives at the boundary. High order Taylor series expansions are used on layered patches in conjunction with a constrained least‐squares procedure to evaluate accurate first and second derivatives of the flow variables at the boundary, required for Dirichlet and Neumann sensitivity boundary conditions. The flow and sensitivity fields are solved using an adaptive finite‐element method. The proposed methodology is first verified on a problem with a closed form solution obtained by the Method of Manufactured Solutions. The ability of the proposed method to provide accurate sensitivity fields for realistic problems is then demonstrated. The flow and sensitivity fields for a NACA 0012 airfoil are used for fast evaluation of the nearby flow over an airfoil of different thickness (NACA 0015). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
45.
New concepts for the study of incompressible plane or axisymmetric flows are analysed by the stream tube method. Flows without eddies and pure vortex flows are considered in a transformed domain where the mapped streamlines are rectilinear or circular. The transformation between the physical domain and the computational domain is an unknown of the problem. In order to solve the non-linear set of relevant equations, we present a new algorithm based on a trust region technique which is effective for non-convex optimization problems. Experimental results show that the new algorithm is more robust compared to the Newton-Raphson method.  相似文献   
46.
Golub et al. (2001, BIT, 41, 71–85) gave a generalizedsuccessive over-relaxation method for the augmented systems.In this paper, the connection between the SOR-like method andthe preconditioned conjugate gradient (PCG) method for the augmentedsystems is investigated. It is shown that the PCG method isat least as accurate (fast) as the SOR-like method. Numericalexamples demonstrate that the PCG method is much faster thanthe SOR-like method.  相似文献   
47.
48.
A simple and accurate four-node quadrilateral finite element based on the Mindlin plate theory and Kirchhoff constraints is presented for general thin plate bending applications. The derivation of the element stiffness properties is straightforward, starting with a specified eight-node interpolation; usual discrete Kirchhoff (DK) constraints are employed to constrain out the four midside nodes of the element. The present resulting DK element passes patch tests with elements of arbitrary and even highly distorted mesh types. Numerical studies of the element convergence behaviours are undertaken for various plate bending problems so far investigated. It is indicated from comparative examples that fairly good convergence characteristics have been achieved.  相似文献   
49.
The effects of preparation method, composition, and thermal condition on formation of β‐iPP in isotactic polypropylene/ethylene–propylene rubber (iPP/EPR) blends were studied using modulated differential scanning calorimeter (MDSC), wide angle X‐ray diffraction (WAXD), and phase contrast microscopy (PCM). It was found that the α‐iPP and β‐iPP can simultaneity form in the melt‐blended samples, whereas only α‐iPP exists in the solution‐blended samples. The results show that the formation of β‐iPP in the melt‐blended samples is related to the crystallization temperature and the β‐iPP generally diminishes and finally vanishes when the crystallization temperature moves far from 125 °C. The phenomena that the lower critical temperature of β‐iPP in iPP/EPR obviously increases to 114 °C and the upper critical temperature decreases to 134 °C indicate the narrowing of temperature interval, facilitating the formation of β‐iPP in iPP/EPR. Furthermore, it was found that the amount of β‐iPP in melt‐blended iPP/EPR samples is dependent on the composition and the maximum amount of β‐iPP formed when the composition of iPP/EPR blends is 85:15 in weight. The results through examining the effect of annealing for iPP/EPR samples at melt state indicate that this annealing may eliminate the susceptibility to β‐crystallization of iPP. However, only α‐iPP can be observed in solution‐blended samples subjected to annealing for different time. The PCM images demonstrate that an obvious phase‐separation happens in both melt‐blended and solution‐blended iPP/EPR samples, implying that compared with the disperse degree of EPR in iPP, the preparation method plays a dominant role in formation of β‐iPP. It is suggested that the origin of formation of β‐iPP results from the thermomechanical history of the EPR component in iPP/EPR. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1704–1712, 2007  相似文献   
50.
This paper discusses the problem of finding the eigenvalue spectrum in determining the stress and strain fields at the tip of an antiplane-shear crack in a power-law material. It is shown that the perturbation method provides an analytical dependence of the eigenvalue on the material nonlinearity parameter and the eigenvalue of the linear problem. Thus, it is possible to find the entire spectrum of eigenvalues and not only the eigenvalue of the Hutchinson-Rice-Rosengren problem. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 1, pp. 173–180, January–February, 2008.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号