首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2138篇
  免费   199篇
  国内免费   174篇
化学   64篇
力学   539篇
综合类   53篇
数学   1593篇
物理学   262篇
  2024年   1篇
  2023年   24篇
  2022年   29篇
  2021年   29篇
  2020年   52篇
  2019年   64篇
  2018年   60篇
  2017年   77篇
  2016年   79篇
  2015年   58篇
  2014年   100篇
  2013年   155篇
  2012年   95篇
  2011年   149篇
  2010年   135篇
  2009年   144篇
  2008年   157篇
  2007年   143篇
  2006年   134篇
  2005年   108篇
  2004年   92篇
  2003年   104篇
  2002年   77篇
  2001年   66篇
  2000年   60篇
  1999年   44篇
  1998年   48篇
  1997年   52篇
  1996年   32篇
  1995年   21篇
  1994年   17篇
  1993年   18篇
  1992年   17篇
  1991年   11篇
  1990年   10篇
  1989年   4篇
  1988年   8篇
  1987年   4篇
  1986年   4篇
  1985年   6篇
  1984年   5篇
  1983年   4篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
  1976年   2篇
  1973年   1篇
  1936年   2篇
排序方式: 共有2511条查询结果,搜索用时 406 毫秒
61.
Adaptive mesh refinement (AMR) shows attractive properties in automatically refining the flow region of interest, and with AMR, better prediction can be obtained with much less labor work and cost compared to manually remeshing or the global mesh refinement. Cartesian AMR is well established; however, AMR on hybrid unstructured mesh, which is heavily used in the high‐Reynolds number flow simulation, is less matured and existing methods may result in degraded mesh quality, which mostly happens in the boundary layer or near the sharp geometric features. User intervention or additional constraints, such as freezing all boundary layer elements or refining the whole boundary layer, are required to assist the refinement process. In this work, a novel AMR strategy is developed to handle existing difficulties. In the new method, high‐order unstructured elements are first generated based on the baseline mesh; then the refinement is conducted in the parametric space; at last, the mesh suitable for the solver is output. Generating refined elements in the parametric space with high‐order elements is the key of this method and this helps to guarantee both the accuracy and robustness. With the current method, 3‐dimensional hybrid unstructured mesh of huge size and complex geometry can be automatically refined, without user intervention nor additional constraints. With test cases including the 2‐dimensional airfoil and 3‐dimensional full aircraft, the current AMR method proves to be accurate, simple, and robust.  相似文献   
62.
The aim of the paper is to estimate the density functions or distribution functions measured by Wasserstein metric, a typical kind of statistical distances, which is usually required in the statistical learningBased on the classical Bernstein approximation, a scheme is presented.To get the error estimates of the scheme, the problem turns to estimating the L1 norm of the Bernstein approximation for monotone C-1functions, which was rarely discussed in the classical approximation theoryFinally, we get a probability estimate by the statistical distance.  相似文献   
63.
The hindered monomer, 2,3,4-trimethyl-3-pentyl methacrylate (I), was synthesized for penultimate effect studies. Since it readily homopoiymerized (km111≠ 0) and readily copolymerized with styrene, copolymerizations of I with styrene were carried out at 60°C in benzene with AIBN as initiator. The conversion to copolymer and the copolymer composition were determined by using GLC techniques. Composition-conversion data was analyzed by performing a computerized nonlinear least-squares fitting to the integrated form of the penultimate model equation. The experimental design included the use of optimized M1°/M2° ratios. The penultimate reactivity ratios calculated from these data were r1′ = 0.23, r1′= 0.59, r2 = 0.59, r2′ = 1.34. Thus, when I is the penultimate unit, a terminal styryl radical prefers to add styrene, whereas when styrene is the penultimate unit, terminal styryl radicals prefer to add I. These results constitute the best evidence for a steric penultimate effect yet available in the literature from composition-conversion studies. However, the case is not yet proved. Further studies to strengthen this conclusion are proposed.  相似文献   
64.
In this paper a comparison is carried out between three correction methods for multigrid local mesh refinement in oceanic applications: FIC, LDC and the direct method (DM) proposed by Spall and Holland. This study is based on a nested primitive equation model developed by Laugier on the basis of the code OPA (LODYC). The external barotropic problem is solved using any of the three local grid correction algorithms yielding an interactive nested grid model. The non-linear elliptic equation for the barotropic streamfunction tendency is solved on two nested grids, called the global and the zoom grid, that interact between themselves. The zoom grid is entirely embedded within the global domain with a horizontal grid step ratio of 3:1. The computation on the global grid supplies the boundary conditions for the zoom grid region and the fine grid fields are used to correct the global coarse solution. The three local correction methods are tested on two problems relevant to oceanic circulation phenomena proposed by Spall and Holland: a barotropic modon and an anticyclonic vortex. The results show that the nesting technique is a very efficient way to solve these problems in terms of a gain in precision compared with the required CPU time. The two-domain model with local mesh refinement allows one both to manage effectively the open boundary conditions for the local grid and to correct the global solution thanks to the zoom solution. In the case of the modon propagation the three local correction methods provide approximately the same results. For the baroclinic vortex it appears that the two iterative methods are more efficient than the direct one.  相似文献   
65.
An unfactored implicit time-marching method for the solution of the unsteady two-dimensional Reynolds-averaged thin layer Navier–Stokes equations is presented. The linear system arising from each implicit step is solved by the conjugate gradient squared (CGS) method with preconditioning based on an ADI factorization. The time-marching procedure has been used with a fast transfinite interpolation method to regenerate the mesh at each time step in response to the motion of the aerofoil. The main test cases examined are from the AGARD aeroelastic configurations and involve aerofoils oscillating rigidly in pitch. These test cases have been used to investigate the effect of various parameters, such as CGS tolerance and laminar/turbulent transition location, on the accuracy and efficiency of the method. Comparisons with available experimental data have been made for these cases. In order to illustrate the application of the mesh generator and flow solver to more general flows where the aerofoil deforms, results for an NACA 0012 aerofoil with an oscillating trailing edge flap are also shown.  相似文献   
66.
A novel control volume finite element method with adaptive anisotropic unstructured meshes is presented for three-dimensional three-phase flows with interfacial tension. The numerical framework consists of a mixed control volume and finite element formulation with a new P1DG-P2 elements (linear discontinuous velocity between elements and quadratic continuous pressure between elements). A “volume of fluid” type method is used for the interface capturing, which is based on compressive control volume advection and second-order finite element methods. A force-balanced continuum surface force model is employed for the interfacial tension on unstructured meshes. The interfacial tension coefficient decomposition method is also used to deal with interfacial tension pairings between different phases. Numerical examples of benchmark tests and the dynamics of three-dimensional three-phase rising bubble, and droplet impact are presented. The results are compared with the analytical solutions and previously published experimental data, demonstrating the capability of the present method.  相似文献   
67.
《力学快报》2020,10(6):419-428
Wake separation is crucial to aircraft landing safety and is an important factor in airport operational efficiency. The near-ground evolution characteristics of wake vortices form the foundation of the wake separation system design. In this study, we analysed the near-ground evolution of vortices in the wake of a domestic aircraft ARJ21 initialised by the lift-drag model using large eddy simulations based on an adaptive mesh. Evolution of wake vortices formed by the main wing, flap and horizontal tail was discussed in detail. The horizontal tail vortices are the weakest and dissipate rapidly, whereas the flap vortices are the strongest and induce the tip vortex to merge with them. The horizontal tail and flap of an ARJ21 do not significantly influence the circulation evolution, height change and movement trajectory of the wake vortices. The far-field evolution of wake vortices can therefore be analysed using the conventional wake vortex model.  相似文献   
68.
This paper uses heat transfer experiments and computational fluid dynamics (CFD) simulations to investigate the conjugate heat transfer (CHT) in a high-pressure pneumatic control valve assembly. A heat transfer test rig was constructed, and time–temperature histories of five test points placed on the valve assembly’s outer surface were recorded for study validation. The Unsteady Reynolds-Averaged Navier–Stokes (URANS) CFD methods with the standard k-ε turbulence closure equations were adopted in the numerical computations. Polyhedral grids were used; time step and mesh convergence studies were conducted. Simulated and measured temperatures profile comparisons revealed a good agreement. The CHT results obtained from CFD showed huge velocity fields downstream of the valve throat and the vent hole. The airflow through the valve was icy, mainly in the supersonic flow areas. Low temperatures below 273.15 K were recorded on the internal and external walls of the valve assembly. The consistency of the measured data with the numerical results demonstrates the effectiveness of polyhedral grids in exploring the CHT using CFD methods. The local entropy production rate analysis revealed that irreversibility is mainly due to viscous dissipation. The current CHT investigation provides a potential basis for thermostress analysis and optimization.  相似文献   
69.
结构柔度矩阵需由质量矩阵归一化振型获得,而质量矩阵归一化振型难以直接测得,限制了柔度曲率类损伤指标的应用。为分析振型归一化方法对梁结构柔度曲率类损伤指标的影响,根据梁结构的刚度、弯矩和位移曲率的关系,建立了均布荷载作用下结构损伤前后位移曲率与损伤程度的理论表达式,实现定量分析均匀荷载面曲率结构损伤程度。提出P-范数振型归一化方法,通过均匀荷载面曲率指标推导了振型质量矩阵归一化系数差x_α与损伤程度的关系。以三跨连续梁算例对理论进行了验证,结果表明,损伤程度定量指标效果良好,不同P-范数振型归一化方法下,损伤程度的偏差可由2x_α估算;2-范数振型归一化方法的损伤识别结果与质量矩阵振型归一化结果最接近,故当无法获得质量矩阵归一化振型时,可采用2-范数归一化振型代替。  相似文献   
70.
本文讨论了一类在无结构三角网上数值求解二维热传导方程的有限差分区域分解算法.在这个算法中,将通过引进两类不同类型的内界点,将求解区域分裂成若干子区域.一旦内界点处的值被计算出来,其余子区域上的计算可完全并行.本文得到了稳定性条件和最大模误差估计,它表明我们的格式有令人满意的稳定性和较高的收敛阶.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号