首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29214篇
  免费   3193篇
  国内免费   3801篇
化学   10087篇
晶体学   109篇
力学   2333篇
综合类   293篇
数学   12334篇
物理学   11052篇
  2024年   86篇
  2023年   311篇
  2022年   639篇
  2021年   703篇
  2020年   874篇
  2019年   822篇
  2018年   833篇
  2017年   921篇
  2016年   1071篇
  2015年   939篇
  2014年   1408篇
  2013年   2376篇
  2012年   1518篇
  2011年   1834篇
  2010年   1462篇
  2009年   1917篇
  2008年   1950篇
  2007年   1986篇
  2006年   1705篇
  2005年   1423篇
  2004年   1180篇
  2003年   1229篇
  2002年   1121篇
  2001年   912篇
  2000年   903篇
  1999年   779篇
  1998年   726篇
  1997年   572篇
  1996年   377篇
  1995年   351篇
  1994年   290篇
  1993年   280篇
  1992年   258篇
  1991年   206篇
  1990年   219篇
  1989年   200篇
  1988年   178篇
  1987年   176篇
  1986年   146篇
  1985年   164篇
  1984年   158篇
  1983年   90篇
  1982年   131篇
  1981年   119篇
  1980年   108篇
  1979年   102篇
  1978年   83篇
  1977年   78篇
  1976年   73篇
  1973年   62篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
972.
Phosphate glasses with compositions of 44P2O5 + 17K2O + 9Al2O3 + (30 − x)CaF2 + xDy2O3 (x = 0.05, 0.1, 0.5, 1.0, 2.0, 3.0 and 4.0 mol %) were prepared and characterized by X-ray diffraction (XRD), differential thermal analysis (DTA), Fourier transform infrared (FTIR), optical absorption, emission and decay measurements. The observed absorption bands were analyzed by using the free-ion Hamiltonian (HFI) model. The Judd–Ofelt (JO) analysis has been performed and the intensity parameters (Ωλ, λ = 2, 4, 6) were evaluated in order to predict the radiative properties of the excited states. From the emission spectra, the effective band widths (Δλeff), stimulated emission cross-sections (σ(λp)), yellow to blue (Y/B) intensity ratios and chromaticity color coordinates (x, y) have been determined. The fluorescence decays from the 4F9/2 level of Dy3+ ions were measured by monitoring the intense 4F9/2 → 6H15/2 transition (486 nm). The experimental lifetimes (τexp) are found to decrease with the increase of Dy3+ ions concentration due to the quenching process. The decay curves are perfectly single exponential at lower concentrations and gradually changes to non-exponential for higher concentrations. The non-exponential decay curves are well fitted to the Inokuti–Hirayama (IH) model for S = 6, which indicates that the energy transfer between the donor and acceptor is of dipole–dipole type. The systematic analysis of revealed that the energy transfer mechanism strongly depends on Dy3+ ions concentration and the host glass composition.  相似文献   
973.
974.
Two‐way multicomponent diffusion processes in polymeric nanocomposite foams, where the condensed phase is nanoscopically reinforced with impermeable fillers, are investigated. The diffusion process involves simultaneous outward permeation of the components of the dispersed gas phase and inward diffusion of atmospheric air. The transient variation in thermal conductivity of foam is used as the macroscopic property to track the compositional variations of the dispersed gases due to the diffusion process. In the continuum approach adopted, the unsteady‐state diffusion process is combined with tortuosity theory. The simulations conducted at ambient temperature reveal distinct regimes of diffusion processes in the nanocomposite foams owing to the reduction in the gas‐transport rate induced by nanofillers. Simulations at a higher temperature are also conducted and the predictions are compared with experimentally determined thermal conductivities under accelerated diffusion conditions for polyurethane foams reinforced with clay nanoplatelets of varying individual lamellar dimensions. Intermittent measurements of foam thermal conductivity are performed while the accelerated diffusion proceeded. The predictions under accelerated diffusion conditions show good agreement with experimentally measured thermal conductivities for nanocomposite foams reinforced with low and medium aspect‐ratios fillers. The model shows higher deviations for foams with fillers that have a high aspect ratio.  相似文献   
975.
Phase stability is important to the application of materials. By first‐principles calculations, we establish the phase stability of chromium borides with various stoichiometries. Moreover, the phases of CrB3 and CrB4 have been predicted by using a newly developed particle swarm optimization (PSO) algorithm. Formation enthalpy–pressure diagrams reveal that the MoB‐type structure is more energetically favorable than the TiI‐type structure for CrB. For CrB2, the WB2‐type structure is preferred at zero pressure. The predicted new phase of CrB3 belongs to the hexagonal P‐6m2 space group and it transforms into an orthorhombic phase as the pressure exceeds 93 GPa. The predicted CrB4 (space group: Pnnm) phase is more energetically favorable than the previously proposed Immm structure. The mechanical and thermodynamic stabilities of predicted CrB3 and CrB4 are verified by the calculated elastic constants and formation enthalpies. The full phonon dispersion calculations confirm the dynamic stability of WB2‐type CrB2 and predicted CrB3. The large shear moduli, large Young’s moduli, low Poisson ratios, and low bulk and shear modulus ratios of CrB4? PSC and CrB4? PSD indicate that they are potential hard materials. Analyses of Debye temperature, electronic localization function, and electronic structure provide further understanding of the chemical and physical properties of these borides.  相似文献   
976.
Motivated by experimental studies of two‐dimensional Ostwald ripening on Au(100) electrodes in chlorine‐containing electrolytes, we have studied diffusion processes using density functional theory. We find that chlorine has a propensity to temporary form AuCl complexes, which diffuse significantly faster than gold adatoms. With and without chlorine, the lowest activation energy is found for the exchange mechanism. Chlorine furthermore reduces the activation energy for the detachment from kink sites. Kinetic Monte Carlo simulations were performed on the basis of extensive density functional theory calculations. The island‐decay rate obtained from these Monte Carlo simulations, as well as the decay rate obtained from the theoretical activation energies and frequency factors when inserted into analytical solutions for Ostwald ripening, are in agreement with experimental island‐decay rates in chlorine‐containing electrolytes.  相似文献   
977.
978.
Buagafuran is a novel drug candidate derived from natural product.Its absolute configuration has been confirmed by electronic circular dichroism combined with modern quantum-chemical calculation using time-dependent density functional theory.The predicted UV absorbance peak is underestimated by several nanometers compared with the experimental data.The applicability of empirical rule for the C=C-C-O system in Buagafuran has also been discussed.Our results show that electronic circular dichroism could be a useful tool for the absolute configuration assignment of chiral drugs,especially for the oily or semisolid substances,whose crystal structures are impossible to obtain.  相似文献   
979.
The energies, geometries and harmonic vibrational frequencies of 1:1 5‐hydroxytryptamine‐water (5‐HT‐H2O) complexes are studied at the MP2/6‐311++G(d,p) level. Natural bond orbital (NBO), quantum theory of atoms in molecules (QTAIM) analyses and the localized molecular orbital energy decomposition analysis (LMO‐EDA) were performed to explore the nature of the hydrogen‐bonding interactions in these complexes. Various types of hydrogen bonds (H‐bonds) are formed in these 5‐HT‐H2O complexes. The intermolecular C4H55‐HT···Ow H‐bond in HTW3 is strengthened due to the cooperativity, whereas no such cooperativity is found in the other 5‐HT‐H2O complexes. H‐bond in which nitrogen atom of amino in 5‐HT acted as proton donors was stronger than other H‐bonds. Our researches show that the hydrogen bonding interaction plays a vital role on the relative stabilities of 5‐HT‐H2O complexes.  相似文献   
980.
This work presents a theoretical insight into the variation of the site-specific intermolecular hydrogen-bonding (HB), formed between C=O group of fluorenone (FN) and O-H groups of methanol (MeOL) molecules, induced by both the electronic excitation and the bulk solvent effect. Through the calculation of molecular ground- and excited-state properties, we not only demonstrate the characters of HB strengthening induced by electronic excitation and the bulk solvent effect but also reveal the underlying physical mechanism which leads to the HB variation. The strengthening of the intermolecular HB in electronically excited states and in liquid solution is characterized by the reduced HB bond-lengths and the red-shift IR spectra accompanied by the increasing intensities of IR absorption corresponding to the characteristic vibrational modes of the O-H and C--O stretching. The HB strengthening in the excited electronic states and in solution mainly arises from the charge redistribution of the FN molecule induced by the electronic excitation and bulk solvent instead of the intermolecular charge transfer. The charge redistribution of the solute molecule increases the partial dipole moment of FN molecule and the FN-MeOL intermolecular interaction, which subsequently leads to the HB strengthening. With the bulk solvent effect getting involved, the theoretical IR spectra of HBed FN-MeOL complexes agree much better with the experiments than those of gas-phase FN-MeOL dimer. All the calculations are carried out based on our developed analytical approaches for the first and second energy derivatives of excited electronic state within the time-dependent density functional theory.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号