首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   913篇
  免费   111篇
  国内免费   49篇
化学   14篇
综合类   11篇
数学   1034篇
物理学   14篇
  2023年   16篇
  2022年   28篇
  2021年   11篇
  2020年   51篇
  2019年   37篇
  2018年   40篇
  2017年   37篇
  2016年   24篇
  2015年   22篇
  2014年   49篇
  2013年   74篇
  2012年   54篇
  2011年   84篇
  2010年   64篇
  2009年   99篇
  2008年   75篇
  2007年   40篇
  2006年   66篇
  2005年   41篇
  2004年   29篇
  2003年   23篇
  2002年   24篇
  2001年   12篇
  2000年   13篇
  1999年   17篇
  1998年   11篇
  1997年   12篇
  1995年   4篇
  1994年   3篇
  1993年   4篇
  1990年   1篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1976年   1篇
排序方式: 共有1073条查询结果,搜索用时 15 毫秒
981.
A graph G is equitably k‐choosable if for every k‐list assignment L there exists an L‐coloring of G such that every color class has at most vertices. We prove results toward the conjecture that every graph with maximum degree at most r is equitably ‐choosable. In particular, we confirm the conjecture for and show that every graph with maximum degree at most r and at least r3 vertices is equitably ‐choosable. Our proofs yield polynomial algorithms for corresponding equitable list colorings.  相似文献   
982.
An ‐coloring of a cubic graph G is an edge coloring of G by points of a Steiner triple system such that the colors of any three edges meeting at a vertex form a block of . A Steiner triple system that colors every simple cubic graph is said to be universal. It is known that every nontrivial point‐transitive Steiner triple system that is neither projective nor affine is universal. In this article, we present the following results.
    相似文献   
983.
For a graph G, let be the maximum number of vertices of G that can be colored whenever each vertex of G is given t permissible colors. Albertson, Grossman, and Haas conjectured that if G is s‐choosable and , then . In this article, we consider the online version of this conjecture. Let be the maximum number of vertices of G that can be colored online whenever each vertex of G is given t permissible colors online. An analog of the above conjecture is the following: if G is online s‐choosable and then . This article generalizes some results concerning partial list coloring to online partial list coloring. We prove that for any positive integers , . As a consequence, if s is a multiple of t, then . We also prove that if G is online s‐choosable and , then and for any , .  相似文献   
984.
图的顶点染色称为是r-无圈的,如果它是正常染色,使得每一个圈C上顶点的颜色数至少为min{|C|,r}.图G的r-无圈染色数是图G的r-无圈染色中所用的最少的颜色数.我们证明了对于任意的r≥4,最大度为△、围长至少为2(r-1)△的图G的r-无圈染色数至多为6(r-1)△.  相似文献   
985.
Let G be a connected graph of order n. The rainbow connection number rc(G) of G was introduced by Chartrand et al. Chandran et al. used the minimum degree of G and obtained an upper bound that rc(G) 〈_ 3n/( δ+ 1) - 3, which is tight up to additive factors. In this paper, we use the minimum degree-sum a2 6n of G to obtain a better bound rc(G) _〈 - 8, especially when is small (constant) but a2 is large (linear in n).  相似文献   
986.
从被积函数的正负性变化规律入手,借助交错级数的敛散性,给出并证明相应反常积分的敛散性,进而推广得出一类反常积分的敛散性判定定理.  相似文献   
987.
A classical question in combinatorics is the following: given a partial Latin square P, when can we complete P to a Latin square L? In this paper, we investigate the class of ε‐dense partial Latin squares: partial Latin squares in which each symbol, row, and column contains no more than ‐many nonblank cells. Based on a conjecture of Nash‐Williams, Daykin and Häggkvist conjectured that all ‐dense partial Latin squares are completable. In this paper, we will discuss the proof methods and results used in previous attempts to resolve this conjecture, introduce a novel technique derived from a paper by Jacobson and Matthews on generating random Latin squares, and use this technique to study ε‐dense partial Latin squares that contain no more than filled cells in total. In this paper, we construct completions for all ε‐dense partial Latin squares containing no more than filled cells in total, given that . In particular, we show that all ‐dense partial Latin squares are completable. These results improve prior work by Gustavsson, which required , as well as Chetwynd and Häggkvist, which required , n even and greater than 107.  相似文献   
988.
We introduce and study backbone colorings, a variation on classical vertex colorings: Given a graph G = (V,E) and a spanning subgraph H of G (the backbone of G), a backbone coloring for G and H is a proper vertex coloring V → {1,2,…} of G in which the colors assigned to adjacent vertices in H differ by at least two. We study the cases where the backbone is either a spanning tree or a spanning path. We show that for tree backbones of G the number of colors needed for a backbone coloring of G can roughly differ by a multiplicative factor of at most 2 from the chromatic number χ(G); for path backbones this factor is roughly . We show that the computational complexity of the problem “Given a graph G, a spanning tree T of G, and an integer ?, is there a backbone coloring for G and T with at most ? colors?” jumps from polynomial to NP‐complete between ? = 4 (easy for all spanning trees) and ? = 5 (difficult even for spanning paths). We finish the paper by discussing some open problems. © 2007 Wiley Periodicals, Inc. J Graph Theory 55: 137–152, 2007  相似文献   
989.
An acyclic vertex coloring of a graph is a proper vertex coloring such that there are no bichromatic cycles. The acyclic chromatic number of G, denoted a(G), is the minimum number of colors required for acyclic vertex coloring of graph G. For a family F of graphs, the acyclic chromatic number of F, denoted by a(F), is defined as the maximum a(G) over all the graphs GF. In this paper we show that a(F)=8 where F is the family of graphs of maximum degree 5 and give a linear time algorithm to achieve this bound.  相似文献   
990.
The adaptable choosability number of a multigraph G, denoted cha(G), is the smallest integer k such that every edge labeling of G and assignment of lists of size k to the vertices of G permits a list coloring of G in which no edge e=uv has both u and v colored with the label of e. We show that cha grows with ch, i.e. there is a function f tending to infinity such that cha(G)≥f(ch(G)).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号