首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7620篇
  免费   903篇
  国内免费   504篇
化学   3254篇
晶体学   26篇
力学   677篇
综合类   112篇
数学   4170篇
物理学   788篇
  2024年   59篇
  2023年   83篇
  2022年   82篇
  2021年   133篇
  2020年   256篇
  2019年   265篇
  2018年   205篇
  2017年   196篇
  2016年   309篇
  2015年   270篇
  2014年   341篇
  2013年   561篇
  2012年   478篇
  2011年   430篇
  2010年   406篇
  2009年   463篇
  2008年   494篇
  2007年   476篇
  2006年   436篇
  2005年   374篇
  2004年   352篇
  2003年   380篇
  2002年   307篇
  2001年   207篇
  2000年   202篇
  1999年   195篇
  1998年   155篇
  1997年   212篇
  1996年   107篇
  1995年   82篇
  1994年   67篇
  1993年   64篇
  1992年   58篇
  1991年   52篇
  1990年   34篇
  1989年   21篇
  1988年   21篇
  1987年   25篇
  1986年   25篇
  1985年   22篇
  1984年   14篇
  1983年   10篇
  1982年   14篇
  1981年   8篇
  1980年   12篇
  1979年   12篇
  1978年   6篇
  1977年   11篇
  1976年   13篇
  1974年   5篇
排序方式: 共有9027条查询结果,搜索用时 15 毫秒
101.
The chemoselective coupling of oxetanes and carbon dioxide to afford functional, heterocyclic organic compounds known as six‐membered cyclic carbonates remains a challenging topic. Here, an effective method for their synthesis relying on the use of Al catalysis is described. The catalytic reactions can be carried out with excellent selectivity for the cyclic carbonate product tolerating various (functional) groups present in the 2‐ and 3‐position(s) of the oxetane ring. The presented methodology is the first general approach towards the formation of six‐membered cyclic carbonates (6MCCs) through oxetane/CO2 coupling chemistry. Apart from a series of substituted six‐membered cyclic carbonates, also the unprecedented room‐temperature coupling of oxetanes and CO2 is disclosed giving, depending on the structural features of the substrate, a variety of five‐ and six‐membered heterocyclic products. A mechanistic rationale is presented for their formation and support for the intermediary presence of a carbonic acid derivative is given. The presented functional carbonates may hold great promise as building blocks in organic synthesis and the development of new, biodegradable polymers.  相似文献   
102.
Dipalladium complexes of a cyclic bis(diimine) ligand with a double‐decker structure catalyze polymerization of ethylene and α‐olefins and copolymerization of ethylene with 1‐hexene. The polymerization of 1‐hexene yields a polymer that is mainly composed of the hexamethylene unit formed by 2,1‐insertion of the monomer into the palladium–carbon bond, followed by chain‐walking (6,1‐insertion). The polymerization of 4‐methyl‐1‐pentene proceeds by 2,1‐insertion with a selectivity of 92–97 %, and affords the polymer with methyl and 2‐methylhexyl branches. 2,1‐Insertion occurs selectively in all of the polymerization reactions of α‐olefins catalyzed by the dipalladium complexes. Ethylene polymerization with the catalyst at 100 °C lasts over 24 h, whereas the monopalladium–diimine catalyst loses its activity within 8 h at 60 °C. Polyethylene obtained by the dipalladium catalyst is less‐branched and has a higher molecular weight compared to that of the monopalladium catalyst under the same conditions. Copolymerization of ethylene with 1‐hexene affords solid products with melting points and molecular weights that vary depending on the polymerization time, suggesting formation of a block and/or gradient copolymer.  相似文献   
103.
We report a simple, highly stereoselective synthesis of (+)‐(S)‐γ‐ionone and (‐)‐(2S,6R)‐cis‐γ‐irone, two characteristic and precious odorants; the latter compound is a constituent of the essential oil obtained from iris rhizomes. Of general interest in this approach are the photoisomerization of an endo trisubstituted cyclohexene double bond to an exo vinyl group and the installation of the enone side chain through a [(NHC)AuI]‐catalyzed Meyer–Schuster‐like rearrangement. This required a careful investigation of the mechanism of the gold‐catalyzed reaction and a judicious selection of reaction conditions. In fact, it was found that the Meyer–Schuster reaction may compete with the oxy‐Cope rearrangement. Gold‐based catalytic systems can promote either reaction selectively. In the present system, the mononuclear gold complex [Au(IPr)Cl], in combination with the silver salt AgSbF6 in 100:1 butan‐2‐one/H2O, proved to efficiently promote the Meyer–Schuster rearrangement of propargylic benzoates, whereas the digold catalyst [{Au(IPr)}2(μ‐OH)][BF4] in anhydrous dichloromethane selectively promoted the oxy‐Cope rearrangement of propargylic alcohols.  相似文献   
104.
Removal of the chloride ligand from [AuCl( 1 ‐κP)] ( 2 ) containing a P‐monodentate 1′‐(diphenylphosphanyl)‐1‐cyanoferrocene ligand ( 1 ), by using silver(I) salts affords cationic complexes of the type [Au( 1 )]X, which exist either as cyclic dimers [Au( 1 )]2X2 ( 3 a , X=SbF6; 3 c , X=NTf2) or linear coordination polymers [Au( 1 )]nXn ( 3 a′ , X=SbF6; 3 b′ , X=ClO4), depending on anion X and the isolation procedure. As demonstrated for 3 a′ , the polymers can be readily cleaved by the addition of donors, such as Cl?, tetrahydrothiophene (tht) or 1 , giving rise to the parent compound 2 , [Au(tht)( 1 ‐κP)][SbF6] ( 5 a ) or [Au( 1 ‐κP)2][SbF6] ( 4 a ), respectively, of which the last two compounds can also be prepared by stepwise replacement of tht in [Au( 1 ‐κP)2][SbF6]. The particular combination of a firmly coordinated (phosphane) and a dissociable (nitrile) donor moieties renders complexes 3/3′ attractive for catalysis because they can serve as shelf‐stable precursors of coordinatively unsaturated AuI fragments, analogous to those that result from the widely used [Au(PR3)(RCN)]X catalysts. The catalytic properties of the Au‐ 1 complexes were evaluated in model annulation reactions, such as the synthesis of 2,3‐dimethylfuran from (Z)‐3‐methylpent‐2‐en‐4‐yn‐1‐ol and oxidative cyclisation of alkynes with nitriles to produce 2,5‐disubstituted 1,3‐oxazoles. Of the compounds tested ( 2 , 3 a′ , 3 b′ , 3 a , 4 a and 5 a ), the best results were consistently achieved with dimer 3 c , which has good solubility in organic solvents and only one firmly bound donor at the gold atom. This compound was advantageously used in the key steps of annuloline and rosefuran syntheses.  相似文献   
105.
The catalytic hydration of benzonitrile and acetonitrile has been studied by employing different arene–ruthenium(II) complexes with phosphinous (PR2OH) and phosphorous acid (P(OR)2OH) ligands as catalysts. Marked differences in activity were found, depending on the nature of both the P‐donor and η6‐coordinated arene ligand. Faster transformations were always observed with the phosphinous acids. DFT computations unveiled the intriguing mechanism of acetonitrile hydration catalyzed by these arene–ruthenium(II) complexes. The process starts with attack on the nitrile carbon atom of the hydroxyl group of the P‐donor ligand instead of on a solvent water molecule, as previously suggested. The experimental results presented herein for acetonitrile and benzonitrile hydration catalyzed by different arene–ruthenium(II) complexes could be rationalized in terms of such a mechanism.  相似文献   
106.
Described herein is the development of practical routes to 8‐aminoquinolines by using readily installable and easily deprotectable amidating reagents. Two scalable procedures were optimized under RhIII‐catalyzed conditions: i) the use of pre‐generated chlorocarbamates and ii) a two‐step one‐pot process that directly employs carbamates. Both approaches are highly convenient for the gram‐scale synthesis of 8‐aminoquinolines under mild conditions. Facile deprotection of the synthetically versatile amidating groups was achieved under the Pd‐catalyzed transfer hydrogenation conditions with simultaneous deoxygenation of quinoline N‐oxides, thus yielding 8‐aminoquinolines in excellent overall efficiency.  相似文献   
107.
A library of monodentate phosphane ligands, each bearing a guanidine receptor unit for carboxylates, was designed. Screening of the library gave some excellent catalysts for regioselective hydroformylation of β,γ‐unsaturated carboxylic acids. A terminal alkene, but‐3‐enoic acid, was hydroformylated with a linear/branched (l/b) regioselectivity up to 41. An internal alkene, pent‐3‐enoic acid was hydroformylated with regioselectivity up to 18:1. Further substrate selectivity (e.g., acid vs. methyl ester) and reaction site selectivity (monofunctionalization of 2‐vinylhept‐2‐enoic acid) were also achieved. Exploration of the structure–activity relationship and a practical and theoretical mechanistic study gave us an insight into the nature of the supramolecular guanidinium–carboxylate interaction within the catalytic system. This allowed us to identify a selective transition‐state stabilization by a secondary substrate–ligand interaction as the basis for catalyst activity and selectivity.  相似文献   
108.
109.
The present study reports the evidence for the multiple carbon–carbon bond insertion into the metal–heteroatom bond via a five‐coordinate metal complex. Detailed analysis of the model catalytic reaction of the carbon–sulfur (C? S) bond formation unveiled the mechanism of metal‐mediated alkyne insertion: a new pathway of C? S bond formation without preliminary ligand dissociation was revealed based on experimental and theoretical investigations. According to this pathway alkyne insertion into the metal–sulfur bond led to the formation of intermediate metal complex capable of direct C? S reductive elimination. In contrast, an intermediate metal complex formed through alkyne insertion through the traditional pathway involving preliminary ligand dissociation suffered from “improper” geometry configuration, which may block the whole catalytic cycle. A new catalytic system was developed to solve the problem of stereoselective S? S bond addition to internal alkynes and a cost‐efficient Ni‐catalyzed synthetic procedure is reported to furnish formation of target vinyl sulfides with high yields (up to 99 %) and excellent Z/E selectivity (>99:1).  相似文献   
110.
In this study, we shall suggest analytical expressions for two-center nuclear attraction integrals over STO’s with a one-center charge distribution by using Fourier transform method. The derivation is based on partial-fraction decompositions and Taylor expansions of rational functions. Analytical expressions obtained by this method are expressed in terms of Gegenbauer, and binomial coefficients and linear combinations of STO’s. Finally, it is relatively easy to express the Fourier integral representations of two-center nuclear attraction integrals with a one-center charge distribution mentioned above as finite and infinite of series of STO’s and irregular solid harmonics which may be considered to be limiting cases of STO’s.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号