首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   997篇
  免费   38篇
  国内免费   38篇
化学   196篇
晶体学   1篇
力学   21篇
综合类   9篇
数学   597篇
物理学   249篇
  2023年   4篇
  2022年   10篇
  2021年   17篇
  2020年   11篇
  2019年   19篇
  2018年   21篇
  2017年   12篇
  2016年   23篇
  2015年   14篇
  2014年   30篇
  2013年   91篇
  2012年   22篇
  2011年   41篇
  2010年   55篇
  2009年   59篇
  2008年   59篇
  2007年   69篇
  2006年   47篇
  2005年   49篇
  2004年   25篇
  2003年   22篇
  2002年   24篇
  2001年   26篇
  2000年   25篇
  1999年   38篇
  1998年   25篇
  1997年   31篇
  1996年   15篇
  1995年   12篇
  1994年   23篇
  1993年   15篇
  1992年   13篇
  1991年   9篇
  1990年   11篇
  1989年   12篇
  1988年   11篇
  1987年   10篇
  1986年   8篇
  1985年   9篇
  1984年   11篇
  1983年   2篇
  1982年   18篇
  1981年   6篇
  1980年   4篇
  1979年   4篇
  1978年   4篇
  1976年   2篇
  1974年   1篇
  1973年   2篇
  1957年   1篇
排序方式: 共有1073条查询结果,搜索用时 0 毫秒
991.
For a multivariate normal distribution with unknown mean vector and unknown dispersion matrix, a sequential procedure for estimating the unknown mean vector is suggested. The procedure is shown to be asymptotically “risk efficient” in the sense of Starr (Ann. Math. Statist. (1966), 1173–1185), and the asymptotic order of the “regret” (see Starr and Woodroofe, Proc. Nat. Acad. Sci. 63 (1969), 285–288) is given. Moderate sample behaviour of the procedure using Monte-Carlo techniques is also studied. Finally, the asymptotic normality of the stopping time is proved.  相似文献   
992.
The arguably simplest model for dynamics in phase space is the one where the velocity can jump between only two discrete values, ±v with rate constant k. For this model, which is the continuous-space version of a persistent random walk, analytic expressions are found for the first passage time distributions to the origin. Since the evolution equation of this model can be regarded as the two-state finite-difference approximation in velocity space of the Kramers–Klein equation, this work constitutes a solution of the simplest version of the Wang–Uhlenbeck problem. Formal solution (in Laplace space) of generalizations where the velocity can assume an arbitrary number of discrete states that mimic the Maxwell distribution is also provided.  相似文献   
993.
Within the cluster of excellence “Tailor-Made Fuels from Biomass”  diethoxymethane (DEM) was identified as a promising fuel candidate from a production perspective. Synthesized by combining a bio-based feedstock and CO2 as carbon source together with “green hydrogen” from water electrolysis DEM is defined as “bio-hybrid fuel” . To determine the molecules general applicability to a combustion system and to develop up combustion models a rapid screening of the ignition characteristics is performed in a rapid compression machine and a shock tube. Those suggest DEM being a potential fuel for gasoline controlled autoignition (GCAI) because of a relatively wide range of temperature independent ignition delay, a good autoignition behavior compared to conventional gasoline fuel and a multi-stage ignition behavior. To test the suitability of those molecules as a fuel and determine possible improvements to the production side, DEM was used in a single cylinder research engine operated in GCAI combustion mode. Compared to GCAI combustion with conventional RON95 E10 fuel, DME shows a significantly decreased ignition delay. As a consequence, the internal residual gas fraction, whose enthalpy is used to initiate autoignition, can be reduced and combustion stability is increased. Starting from similar combustion phasing using external exhaust gas recirculation to align the ignition behavior of DEM and RON95 E10, a variation of the intake temperature reveals that DEM has the potential to reduce the sensitivity of the combustion system.  相似文献   
994.
The basic method of UPEN (uniform penalty inversion of multiexponential decay data) is given in an earlier publication (Borgia et al., J. Magn. Reson. 132, 65–77 (1998)), which also discusses the effects of noise, constraints, and smoothing on the resolution or apparent resolution of features of a computed distribution of relaxation times. UPEN applies negative feedback to a regularization penalty, allowing stronger smoothing for a broad feature than for a sharp line. This avoids unnecessarily broadening the sharp line and/or breaking the wide peak or tail into several peaks that the relaxation data do not demand to be separate. The experimental and artificial data presented earlier were T1 data, and all had fixed data spacings, uniform in log-time. However, for T2 data, usually spaced uniformly in linear time, or for data spaced in any manner, we have found that the data spacing does not enter explicitly into the computation. The present work shows the extension of UPEN to T2 data, including the averaging of data in windows and the use of the corresponding weighting factors in the computation. Measures are implemented to control portions of computed distributions extending beyond the data range. The input smoothing parameters in UPEN are normally fixed, rather than data dependent. A major problem arises, especially at high signal-to-noise ratios, when UPEN is applied to data sets with systematic errors due to instrumental nonidealities or adjustment problems. For instance, a relaxation curve for a wide line can be narrowed by an artificial downward bending of the relaxation curve. Diagnostic parameters are generated to help identify data problems, and the diagnostics are applied in several examples, with particular attention to the meaningful resolution of two closely spaced peaks in a distribution of relaxation times. Where feasible, processing with UPEN in nearly real time should help identify data problems while further instrument adjustments can still be made. The need for the nonnegative constraint is greatly reduced in UPEN, and preliminary processing without this constraint helps identify data sets for which application of the nonnegative constraint is too expensive in terms of error of fit for the data set to represent sums of decaying positive exponentials plus random noise.  相似文献   
995.
Let (B t) t0 be the standard linear Brownian motion started at y and set (X t, B t). In this paper we introduce some martingales related to the Markov process (U t) t0, which allow us to calculate explicitly the probability laws of several passage times associated to U in a probabilistic way. With the aid of an appropriate supermartingale, we also establish the transience of the process (U t) t0.  相似文献   
996.
秦喜梅  钱云 《大学数学》2011,27(4):103-107
在C0半群和双连续半群逼近定理的启发下,讨论了双连续n次积分C-半群的逼近定理.  相似文献   
997.
This paper discusses discrete-time single server Geo/G/1 queues that are subject to failure due to a disaster arrival. Upon a disaster arrival, all present customers leave the system. At a failure epoch, the server is turned off and the repair period immediately begins. The repair times are commonly distributed random variables. We derive the probability generating functions of the queue length distribution and the FCFS sojourn time distribution. Finally, some numerical examples are given.  相似文献   
998.
秦喜梅  葛国菊 《大学数学》2008,24(3):104-111
在双连续半群和n次积分C-半群的基础上,引入了指数有界的双连续n次积分C-半群,并讨论了其性质和生成定理.  相似文献   
999.
We derive some general results on the Fisher information (FI) contained in the upper (or lower)k-record values and associatedk-record times generated from an i.i.d. sample of fixed size from a continuous distribution. We apply the results to obtain the FI in both upper and lowerk-record data from an exponential distribution. We propose two estimators of the exponential mean, based on the upper and lowerk-record data, and discuss their small sample properties. We also considerk-record data from an inverse sampling plan, and present general formulas for the FI contained in it. Supported in part by Fonde Nacional de Desarrollo Cientifico y Tecnologico (FONDECYT) grant # 1020479 of Chile.  相似文献   
1000.
研究了一类波动率是平方根过程的随机波动CEV模型的首中时问题.利用鞅方法求解首中时和波动率的联合拉普拉斯变换,继而将问题转换为求解一类变系数二阶常微分方程,通过变量代换将此方程转化为经典的Whittaker方程,得到联合拉普拉斯变换表达式.最后,选取不同的参数,使随机波动CEV模型的资产价格过程能够涵盖O-U过程、几何布朗运动、平方根过程等几种常见的扩散过程,画出不同参数下联合拉普拉斯变换函数的三维图像,并分析其变化趋势.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号