首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78312篇
  免费   6745篇
  国内免费   6252篇
化学   44681篇
晶体学   583篇
力学   5817篇
综合类   660篇
数学   11986篇
物理学   27582篇
  2024年   106篇
  2023年   749篇
  2022年   1572篇
  2021年   1857篇
  2020年   2177篇
  2019年   2074篇
  2018年   1846篇
  2017年   2173篇
  2016年   2526篇
  2015年   2287篇
  2014年   3046篇
  2013年   5223篇
  2012年   3821篇
  2011年   4247篇
  2010年   3418篇
  2009年   4663篇
  2008年   4880篇
  2007年   5286篇
  2006年   4641篇
  2005年   3823篇
  2004年   3346篇
  2003年   3334篇
  2002年   3666篇
  2001年   2655篇
  2000年   2512篇
  1999年   2096篇
  1998年   2038篇
  1997年   1331篇
  1996年   1238篇
  1995年   1115篇
  1994年   1100篇
  1993年   820篇
  1992年   892篇
  1991年   609篇
  1990年   565篇
  1989年   430篇
  1988年   391篇
  1987年   342篇
  1986年   313篇
  1985年   282篇
  1984年   283篇
  1983年   168篇
  1982年   240篇
  1981年   213篇
  1980年   150篇
  1979年   174篇
  1978年   146篇
  1977年   131篇
  1976年   95篇
  1973年   69篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
31.
In this paper, the deformation of the Heisenberg algebra, consistent with both the generalized uncertainty principle and doubly special relativity, has been analyzed. It has been observed that, though this algebra can give rise to fractional derivative terms in the corresponding quantum mechanical Hamiltonian, a formal meaning can be given to them by using the theory of harmonic extensions of function. Depending on this argument, the expression of the propagator of the path integral corresponding to the deformed Heisenberg algebra, has been obtained. In particular, the consistent expression of the one dimensional free particle propagator has been evaluated explicitly. With this propagator in hand, it has been shown that, even in free particle case, normal generalized uncertainty principle and doubly special relativity show very much different result.  相似文献   
32.
The impact of reversible bond formation between a growing radical chain and a metal complex (organometallic‐mediated radical polymerization (OMRP) equilibrium) to generate an organometallic intermediate/dormant species is analyzed with emphasis on the interplay between this and other one‐electron processes involving the metal complex, which include halogen transfer in atom transfer radical polymerization (ATRP), hydrogen‐atom transfer in catalytic chain transfer (CCT), and catalytic radical termination (CRT). The challenges facing the controlled polymerization of “less active monomers” (LAMs) are outlined and, after reviewing the recent achievements of OMRP in this area, the perspectives of this technique are analyzed.  相似文献   
33.
Leukotrienes (LTs) and hydroxyeicosatetraenoic acids (HETEs) are important bioactive lipid mediators that participate in various pathophysiological processes. To advance understanding of the mechanisms that regulate these mediators in physiological and pathological processes, an analytical method using liquid chromatography/tandem mass spectrometry for the simultaneous quantification of LTB4, LTC4, LTD4, LTE4, 5‐HETE, 8‐HETE, 12‐HETE and 15‐HETE in cell culture media was developed. A Supel?‐Select HLB solid‐phase extraction cartridge was used for sample preparation. The compounds were separated on a C18 column using gradient elution with acetonitrile–water–formic acid (20:80:0.1, v/v/v) and acetonitrile–formic acid (100:0.1, v/v). The calibration curves of LTB4, LTD4, LTE4 and HETEs were linear in the range of 0.025–10 ng/mL, and the calibration curve of LTC4 was linear in the range of 0.25–10 ng/mL. Validation assessment showed that the method was highly reliable with good accuracy and precision. The stability of LTs and HETEs was also investigated. Using the developed method, we measured LTs and HETEs in the culture supernatant of the human mast cell line HMC‐1. The present method could facilitate investigations of the mechanisms that regulate the production, release and signaling of LTs and HETEs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
34.
DFT computations have been performed to investigate the mechanism of H2‐assisted chain transfer strategy to functionalize polypropylene via Zr‐catalyzed copolymerization of propylene and p‐methylstyrene (pMS). The study unveils the following: (i) propylene prefers 1,2‐insertion over 2,1‐insertion both kinetically and thermodynamically, explaining the observed 1,2‐insertion regioselectivity for propylene insertion. (ii) The 2,1‐inserion of pMS is kinetically less favorable but thermodynamically more favorable than 1,2‐insertion. The observation of 2,1‐insertion pMS at the end of polymer chain is due to thermodynamic control and that the barrier difference between the two insertion modes become smaller as the chain length becomes longer. (iii) The pMS insertion results in much higher barriers for subsequent either propylene or pMS insertion, which causes deactivation of the catalytic system. (iv) Small H2 can react with the deactivated [Zr]?pMS?PPn facilely, which displace functionalized pMS?PPn chain and regenerate [Zr]? H active catalyst to continue copolymerization. The effects of counterions are also discussed. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 576–585  相似文献   
35.
A model is developed for the formation and propagation of cracks in a material sample that is heated at its top surface, pyrolyses, and then thermally degrades to form char. In this work the sample is heated uniformly over its entire top surface by a hypothetical flame (a heat source). The pyrolysis mechanism is described by a one-step overall reaction that is dependent nonlinearly on the temperature (Arrhenius form). Stresses develop in response to the thermal degradation of the material by means of a shrinkage strain caused by local mass loss during pyrolysis. When the principal stress exceeds a prescribed threshold value, the material forms a local crack. Cracks are found to generally originate at the surface in response to heating, but occasionally they form in the bulk, away from ever-changing material boundaries. The resulting cracks evolve and form patterns whose characteristics are described. Quantities examined in detail are: the crack spacing in the pyrolysis zone; the crack length evolution; the formation and nature of crack loops which are defined as individual cracks that have joined to form loops that are disconnected from the remaining material; the formation of enhanced pyrolysis area; and the impact of all of the former quantities on mass flux. It is determined that the mass flux from the sample can be greatly enhanced over its nominal (non-cracking) counterpart. The mass efflux profile qualitatively resembles those observed in Cone Calorimeter tests.  相似文献   
36.
In this paper, we review some results over the last 10-15 years on elliptic and parabolic equations with discontinuous coefficients. We begin with an approach given by N. V. Krylov to parabolic equations in the whole space with $\rm{VMO}_x$ coefficients. We then discuss some subsequent development including elliptic and parabolic equations with coefficients which are allowed to be merely measurable in one or two space directions, weighted $L_p$estimates with Muckenhoupt ($A_p$) weights, non-local elliptic and parabolic equations, as well as fully nonlinear elliptic and parabolic equations.  相似文献   
37.
Cycloparaphenylene ([r]CPP) and cyclacene ([r]CA) series are models for short carbon nanotubes. It is shown that armchair edges in model cycloparaphenylenes possess greater aromaticity and cyclic conjugation than do zigzag edges in model cyclacenes. According to Aihara’s bond resonance energy (BRE) and Bosanac and Gutman energy effect (ef) measurements, cycloparaphenylenes are twice as aromatic as cyclacenes. The general solution of all eigenvalues of all members of the cycloparaphenylene series is given. The origin of the recurrence of some eigenvalues are determined.  相似文献   
38.
39.
1,3-Azaprotio transfer of propargylic α-ketocarboxylate oximes, a new type of alkynyl oximes featuring an ester tether, has been explored by taking advantage of gold catalysis. The incorporation of an oxygen atom to the chain of alkynyl oximes led to the formation of two different oxa-cyclic nitrones. It was found that internal alkynyl oximes with an E-configuration deliver five-membered nitrones, whereas terminal alkynyl oximes with an E-configuration afford six-membered nitrones. DFT calculations on four possible pathways supported a stepwise formation of C−N and C−H bonds, in which a 1,3-acyloxy-migration competes with the 1,3-azaprotio-transfer, especially in the case of internal alkynyl oximes. The relative nucleophilic properties of oxygen in the carbonyl group and the nitrogen in the oxime, the electronic effects of alkynes, and the influence of the ring system have been investigated computationally.  相似文献   
40.
ABSTRACT

QM(UB3LYP)/MM(AMBER) calculations were performed for the locations of the transition structure (TS) of the oxygen–oxygen (O–O) bond formation in the S4 state of the oxygen-evolving complex (OEC) of photosystem II (PSII). The natural orbital (NO) analysis of the broken-symmetry (BS) solutions was also performed to elucidate the nature of the chemical bonds at TS on the basis of several chemical indices defined by the occupation numbers of NO. The computational results revealed a concerted bond switching (CBS) mechanism for the oxygen–oxygen bond formation coupled with the one-electron transfer (OET) for water oxidation in OEC of PSII. The orbital interaction between the σ-HOMO of the Mn(IV)4–O(5) bond and the π*-LUMO of the Mn(V)1=O(6) bond plays an important role for the concerted O–O bond formation for water oxidation in the CaMn4O6 cluster of OEC of PSII. One electron transfer (OET) from the π-HOMO of the Mn(V)1=O(6) bond to the σ*-LUMO of the Mn(IV)4–O(5) bond occurs for the formation of electron transfer diradical, where the generated anion radical [Mn(IV)4–O(5)]-? part is relaxed to the ?Mn(III)4?…?O(5)- structure and the cation radical [O(6)=Mn(V)1]+ ? part is relaxed to the +O(6)–Mn(IV)1? structure because of the charge-spin separation for the electron-and hole-doped Mn–oxo bonds. Therefore, the local spins are responsible for the one-electron reductions of Mn(IV)4->Mn(III)4 and Mn(V)1->Mn(IV)1. On the other hand, the O(5)- and O(6)+ sites generated undergo the O–O bond formation in the CaMn4O6 cluster. The Ca(II) ion in the cubane- skeleton of the CaMn4O6 cluster assists the above orbital interactions by the lowering of the orbital energy levels of π*-LUMO of Mn(V)1=O(6) and σ*-LUMO of Mn(IV)4–O(5), indicating an important role of its Lewis acidity. Present CBS mechanism for the O–O bond formation coupled with one electron reductions of the high-valent Mn ions is different from the conventional radical coupling (RC) and acid-base (AB) mechanisms for water oxidation in artificial and native photosynthesis systems. The proton-coupled electron transfer (PC-OET) mechanism for the O–O bond formation is also touched in relation to the CBS-OET mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号