全文获取类型
收费全文 | 374篇 |
免费 | 78篇 |
国内免费 | 16篇 |
专业分类
化学 | 175篇 |
力学 | 56篇 |
综合类 | 1篇 |
数学 | 153篇 |
物理学 | 83篇 |
出版年
2024年 | 3篇 |
2023年 | 20篇 |
2022年 | 24篇 |
2021年 | 15篇 |
2020年 | 27篇 |
2019年 | 18篇 |
2018年 | 16篇 |
2017年 | 30篇 |
2016年 | 33篇 |
2015年 | 32篇 |
2014年 | 45篇 |
2013年 | 36篇 |
2012年 | 30篇 |
2011年 | 24篇 |
2010年 | 14篇 |
2009年 | 13篇 |
2008年 | 16篇 |
2007年 | 17篇 |
2006年 | 7篇 |
2005年 | 7篇 |
2004年 | 7篇 |
2003年 | 5篇 |
2002年 | 3篇 |
2001年 | 3篇 |
2000年 | 2篇 |
1999年 | 5篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1991年 | 2篇 |
1990年 | 1篇 |
1988年 | 6篇 |
1987年 | 1篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1982年 | 1篇 |
1979年 | 1篇 |
排序方式: 共有468条查询结果,搜索用时 46 毫秒
11.
《Journal of computational chemistry》2018,39(22):1779-1794
Time‐ and frequency‐resolved optical signals provide insights into the properties of light‐harvesting molecular complexes, including excitation energies, dipole strengths and orientations, as well as in the exciton energy flow through the complex. The hierarchical equations of motion (HEOM) provide a unifying theory, which allows one to study the combined effects of system‐environment dissipation and non‐Markovian memory without making restrictive assumptions about weak or strong couplings or separability of vibrational and electronic degrees of freedom. With increasing system size the exact solution of the open quantum system dynamics requires memory and compute resources beyond a single compute node. To overcome this barrier, we developed a scalable variant of HEOM. Our distributed memory HEOM, DM‐HEOM, is a universal tool for open quantum system dynamics. It is used to accurately compute all experimentally accessible time‐ and frequency‐resolved processes in light‐harvesting molecular complexes with arbitrary system‐environment couplings for a wide range of temperatures and complex sizes. © 2018 Wiley Periodicals, Inc. 相似文献
12.
Light-conversion phosphor nanoarchitectonics for improved light harvesting in sensitized solar cells
Photovoltaic technology provides a promising approach for solar energy conversion. One significant factor limiting the efficiency is the poor light harvesting of solar energy, which is related to the mismatch between the energy distribution of photons and the absorption of semiconductor materials or dye. Light-conversion phosphors have been explored as spectral converters to improve the light-harvesting ability in sensitized solar cells. Many progressive studies have been conducted to expand the family of light-conversion phosphors and exploit their application in sensitized solar cells, bringing emerging opportunities to develop commercial sensitized solar cells. In this review, we survey the development of light-conversion phosphors in sensitized solar cells. First, the application and conversion mechanism of light-conversion phosphors, including up-conversion phosphors, down-conversion phosphors, up/down conversion phosphors, and long-lasting phosphors, are summarized in detail. After that, the challenging problems and possible solutions of applying light-conversion phosphors to sensitized solar cells are discussed. The review also highlights some new ideas in the development of sensitized solar cells and the application of light-conversion phosphors in other solar technology. 相似文献
13.
For seeking high‐efficiency narrow‐band‐gap donor materials to enhance short‐circuit current density for organic solar cells, a series of oligo‐selenophene (OS) and oligo(3,4‐ethylenedioxyselenophene) (OEDOS) with various chain lengths were designed and characterized using density functional theory (DFT) and time‐dependent DFT calculations. Based on the results, it can be seen that with increasing chain length of the oligomers in both syn‐ and anti‐adding manners, the bond length alternation is decreased which indicates that the π‐electron delocalization is increased. Also, when the chain length is increased the electronic energy gap and the optical energy gap are decreased. It can be concluded that the syn‐(OS)n=10,14,15, anti‐(OS)n=14 and anti‐(OEDOS)n=7–12 oligomers can act as low‐band‐gap polymers. Therefore they can absorb more sunlight based on maximum wavelength (higher than 620 nm). Furthermore, a red shift in the simulated absorption spectra of (OS)n and (OEDOS)n donors is observed. It is found that (OS)n=14,15 with syn configuration of the extended oligomers is the most suitable donor for the design of high‐performance organic solar cells possessing a narrow electronic band gap, high exciton lifetime and broad and intense absorption spectra that cover the solar spectrum leading to complete light‐harvesting efficiency. 相似文献
14.
Kim J Koh JK Kim B Kim JH Kim E 《Angewandte Chemie (International ed. in English)》2012,51(28):6864-6869
Nanopatterning provides facile process to well-arrayed mesoporous inorganic oxide films at low cost by using readily available pastes and elastomeric nanostamps. The fabricated nanopattern boosted the light-harvesting efficiency of dye-sensitized solar cells (DSSCs) by a light-trapping technique. The iodine-free solid-state DSSCs showed a 40 % increase in the current density and high efficiency (7.03 %). 相似文献
15.
Cyrielle Roquelet Jean‐Sébastien Lauret Dr. Valérie Alain‐Rizzo Dr. Christophe Voisin Dr. Romain Fleurier Dr. Morgan Delarue Damien Garrot Dr. Annick Loiseau Prof. Philippe Roussignol Prof. Jacques A. Delaire Prof. Emmanuelle Deleporte Prof. 《Chemphyschem》2010,11(8):1667-1672
We report on a new, original and efficient method for π‐stacking functionalization of single‐wall carbon nanotubes. This method is applied to the synthesis of a high‐yield light‐harvesting system combining single‐wall carbon nanotubes and porphyrin molecules. We developed a micelle‐swelling technique that leads to controlled and stable complexes presenting an efficient energy transfer. We demonstrate the key role of the organic solvent in the functionalization mechanism. By swelling the micelles, the solvent helps the non‐water‐soluble porphyrins to reach the micelle core and allows a strong enhancement of the interaction between porphyrins and nanotubes. This technique opens new avenues for the functionalization of carbon nanostructures. 相似文献
16.
Yong Zhao Xianliang Sheng Jin Zhai Lei Jiang Chunhe Yang Zhongwei Sun Yongfang Li Daoben Zhu 《Chemphyschem》2007,8(6):856-861
Titanium dioxide (TiO(2)) photoelectrodes with micro/nano hierarchical branched inner channels have been prepared by an electrohydrodynamic (EHD) technique and assembled to form dye-sensitized solar cells (DSSCs). Excellent penetration of ionic-liquid electrolytes and enhanced light harvesting in the longer wavelength region are realized within the composite-structure electrode, thus a better fill factor (ff) of 75.3 % and higher conversion efficiency (eta) of 7.1 % are obtained for viscous ionic-liquid electrolytes compared to pure nanostructured films. Hierarchical branched channels in the photoanodes can efficiently improve the transport properties of redox-active species in viscous electrolytes, which is demonstrated by electrical impedance spectroscopy (EIS). The incident monochromatic photon-to-electron conversion efficiency (IPCE) shows that enhanced light scattering in the composite film is of benefit for light harvesting and thus for solar energy conversion efficiency. 相似文献
17.
Su-Juan Pan Dong-Dong Ma Jian-Sheng Liu Kui-Zhi Chen Tian-Tian Zhang 《Journal of Coordination Chemistry》2016,69(4):618-627
A series of benzophenone chromospheres and zinc(II) phthalocyanine dichromophores labeled poly (aryl benzyl ether) dendrimer (Gn-DZnPc(BP)8n, n = 1?2) were synthesized. Their structures were characterized by elemental analysis, 1H NMR, IR, UV–vis and matrix-assisted laser desorption/ionization time-of-flight spectrometry (MALDI-TOF MS). Their photophysical properties were examined by steady-state and time-resolved fluorescence methods. Both the poly (aryl benzyl ether) dendrimer and BP terminal chromophores had a significant effect on photophysical properties of the zinc(II) phthalocyanine core. Time-resolved spectroscopic measurements indicated that the lifetime of benzophenone (donor) chromophore was longer than that of the zinc(II) phthalocyanine (acceptor). The fluorescence of the peripheral benzophenone chromophores was quenched by the phthalocyanine group attached to the focal point. All of these observations suggest that an intramolecular singlet energy transfer occurs in Gn-DZnPc(BP)8n molecules. The light-harvesting abilities of these molecules increased with generations due to an increase in the number of benzophenone chromophores. The energy transfer efficiencies were ca. 0.49 and 0.68 for generations 1 and 2, respectively, and the rate constants of the singlet-singlet energy transfer were ca. 108 s?1. The rate constants changed inconspicuously with increase of dendron generations. The intramolecular singlet-singlet energy transfer is proposed to proceed mainly via a Förster-type interaction mechanism involving the dendrimer backbone as a scaffold to hold the peripheral benzophenone chromophores and the phthalocyanine core together. This dendrimer was an effective new energy transmission complex with high efficiency and could be used as a potential light-harvesting system. 相似文献
18.
The inferior utilization efficiency of light is the main obstacle to the practical application of traditional photocatalysts such as TiO2 and ZnO. In this regard, the development of novel photocatalysts with the capability of harvesting full spectrum light (from ultraviolet (UV) to near-infrared (NIR)) energy is a promising solution for solar energy conversion and environmental remediation. Here, we report the discovery of a single material that can harvest UV, visible (VIS), and NIR radiations to decompose heavy metal contaminants in aqueous solution. Zeolitic imidazolate framework-67 (ZIF-67) rhombic dodecahedrons were synthesized through a facile solution approach and employed in the reduction of Cr(VI) under UV−VIS−NIR pulsed laser irradiation, which was generated from the fundamental, second and third harmonics of Nd:YAG laser, respectively. The nanostructures showed efficient Cr(VI) reduction under UV, VIS and NIR laser irradiation and the measured reduction efficiency (%) was 71.22%, 69.52%, and 40.79%, respectively after 120 min. A possible explanation for the photocatalytic activity in Cr(VI) reduction was proposed. This is the first study of its kind where pulsed laser and ZIF-67 rhombic dodecahedrons capable of harvesting full spectrum light energy have been employed for the removal of Cr(VI) from water. The extraordinary capacity of harvesting full-spectrum light and long-term stability make ZIF-67 a potential photocatalyst for environmental remediation. 相似文献
19.
We have demonstrated the construction of multiple porphyrin arrays in the tobacco mosaic virus (TMV) supramolecular structures by self-assembly of recombinant TMV coat protein (TMVCP) monomers, in which Zn-coordinated porphyrin (ZnP) and free-base porphyrin (FbP) were site-selectively incorporated. The photophysical properties of porphyrin moieties incorporated in the TMV assemblies were also characterized. TMV-porphyrin conjugates employed as building blocks self-assembled into unique disk and rod structures under the proper conditions as similar to native TMV assemblies. The mixture of a ZnP donor and an FbP acceptor was packed in the TMV assembly and showed energy transfer and light-harvesting activity. The detailed photophysical properties of the arrayed porphyrins in the TMV assemblies were examined by time-resolved fluorescence spectroscopy, and the energy transfer rates were determined to be 3.1-6.4x10(9) s(-1). The results indicate that the porphyrins are placed at the expected positions in the TMV assemblies. 相似文献
20.
Dr. Anil Reddy Marri Edoardo Marchini Dr. Valentin Diez Cabanes Dr. Roberto Argazzi Dr. Mariachiara Pastore Prof. Stefano Caramori Prof. Carlo Alberto Bignozzi Dr. Philippe C. Gros 《Chemistry (Weinheim an der Bergstrasse, Germany)》2021,27(65):16260-16269
A series of six new Fe(II)NHC-carboxylic sensitizers with their ancillary ligand decorated with functions of varied electronic properties have been designed with the aim to increase the metal-to- surface charge separation and light harvesting in iron-based dye-sensitized solar cells (DSSCs). ARM130 scored the highest efficiency ever reported for an iron-sensitized solar cell (1.83 %) using Mg2+ and NBu4I-based electrolyte and a thick 20 μm TiO2 anode. Computational modelling, transient absorption spectroscopy and electrochemical impedance spectroscopy (EIS) revealed that the electronic properties induced by the dimethoxyphenyl-substituted NHC ligand of ARM130 led to the best combination of electron injection yield and spectral sensitivity breadth. 相似文献