首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   6篇
  国内免费   4篇
化学   10篇
力学   14篇
数学   46篇
物理学   30篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2015年   1篇
  2014年   2篇
  2013年   5篇
  2012年   6篇
  2011年   4篇
  2010年   6篇
  2009年   6篇
  2008年   4篇
  2007年   1篇
  2006年   3篇
  2005年   7篇
  2004年   5篇
  2003年   1篇
  2002年   7篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   5篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1992年   2篇
  1990年   1篇
  1982年   1篇
  1979年   1篇
排序方式: 共有100条查询结果,搜索用时 31 毫秒
31.
The interaction of stable pulse solutions on R 1 is considered when distances between pulses are sufficiently large. We construct an attractive local invariant manifold giving the dynamics of interacting pulses in a mathematically rigorous way. The equations describing the flow on the manifold is also given in an explicit form. By it, we can easily analyze the movement of pulses such as repulsiveness, attractivity and/or the existence of bound states of pulses. Interaction of front solutions are also treated in a similar way.  相似文献   
32.
A kinetic approach is adopted to describe the exponential growth of a small deviation of the initial phase space point, measured by the largest Lyapunov exponent, for a dilute system of hard disks, both in equilibrium and in a uniform shear flow. We derive a generalized Boltzmann equation for an extended one-particle distribution that includes deviations from the reference phase space point. The equation is valid for very low densities n, and requires an unusual expansion in powers of 1/|ln n|. It reproduces and extends results from the earlier, more heuristic clock model and may be interpreted as describing a front propagating into an unstable state. The asymptotic speed of propagation of the front is proportional to the largest Lyapunov exponent of the system. Its value may be found by applying the standard front speed selection mechanism for pulled fronts to the case at hand. For the equilibrium case, an explicit expression for the largest Lyapunov exponent is given and for sheared systems we give explicit expressions that may be evaluated numerically to obtain the shear rate dependence of the largest Lyapunov exponent.  相似文献   
33.
We consider the (traveling-wave-like) fronts which propagate with rational velocityp/q in a simple coupled map lattice for which the local map has two stable fixed points. We prove the uniqueness of such orbits up to time iterations, space translations, and permutations of the associated codes. A condition for their existence is also given, but it has to be checked in each case. We expect this condition to serve as a selection mechanism. The technique employed, the so-called (generalized) transfer matrix method, allows us to give explicit expressions for these solutions. These fronts are actually the observed orbits in the numerical simulations, as is shown with two examples: the case of velocity 1/2 and that of velocity 1.  相似文献   
34.
Vegetation patterning in water-limited and other resource-limited ecosystems highlights spatial self-organization processes as potentially key drivers of community assembly. These processes provide insight into predictable landscape-level relationships between organisms and their abiotic environment in the form of regular and irregular patterns of biota and resources. However, two aspects have largely been overlooked; the roles played by plant – soil-biota feedbacks and allelopathy in spatial self-organization, and their potential contribution, along with plant-resource feedbacks, to community assembly through spatial self-organization. Here, we expand the drivers of spatial self-organization from a focus on plant-resource feedbacks to include plant – soil-biota feedbacks and allelopathy, and integrate concepts of nonlinear physics and community ecology to generate a new hypothesis. According to this hypothesis, below-ground processes can affect community assemblages through two types of spatial self-organization, global and local. The former occurs simultaneously across whole ecosystems, leading to self-organized patterns of biota, allelochemicals and resources, and niche partitioning. The latter occurs locally in ecotones, and determines ecotone structure and motion, invasion dynamics, and species coexistence. Studies of the two forms of spatial self-organization are important for understanding the organization of plant communities in drier climates which are likely to involve spatial patterning or re-patterning. Such studies are also important for developing new practices of ecosystem management, based on local manipulations at ecotones, to slow invasion dynamics or induce transitions from transitive to intransitive networks of interspecific interactions which increase species diversity.  相似文献   
35.
36.
This paper is concerned with nonlinear stability of traveling wave fronts for a delayed reaction diffusion system. We prove that the traveling wave front is exponentially stable to perturbation in some exponentially weighted L spaces, when the difference between initial data and traveling wave front decays exponentially as x→−, but the initial data can be suitable large in other locations. Moreover, the time decay rates are obtained by weighted energy estimates.  相似文献   
37.
This paper is concerned with the asymptotic stability of planar waves in the buffered bistable system on , where n ≥ 2. Under initial perturbation that decays at space infinity, the perturbed solution converges to planar waves as t → ∞ . The convergence is uniform in . Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
38.
We study the hydrodynamic corrections to the dynamics and structure of an exothermic chemical wave front of Fisher-Kolmogorov-Petrovskii-Piskunov (F-KPP) type which travels in a one-dimensional gaseous medium. We show in particular that its long time dynamics, cut-off sensitivity and leading edge behavior are almost entirely controlled by the hydrodynamic front speed correction δUh which characterizes the pushed nature of the front. Reducing the problem to an effective comoving heterogeneous F-KPP equation, we determine two analytical expressions for δUh: an accurate one, derived from a variational method, and an approximate one, from which one can assess the δUh sensitivity to the shear viscosity and heat conductivity of the fluid of interest.  相似文献   
39.
In this work we investigate the influence of inhomogeneities on wave front propagation in an excitatory neural field model describing synaptic activity in the absence of delays. This allows the derivation of the spatial (and hence temporal) behaviour of the front velocity under the assumption that the front is approximatively homogeneous in a very small time window. With this assumption we can also derive the spatiotemporal behaviour of the membrane potential analytically in the vicinity of the wave front. In addition to this we investigate stationary solutions such as standing wave fronts and localised activity (so-called bumps) to determine the existence condition of travelling and standing fronts. Numerical results are included to point out the accordance of theory and simulation.  相似文献   
40.
The formation and propagation of thermal fronts in a cylindricalmedium that is undergoing microwave heating is studied in detail.The model consists of Maxwell's wave equation coupled to a temperaturediffusion equation containing a bistable nonlinear term. When the thermal diffusivity is sufficiently small the leading-ordertemperature solution of a singular perturbation analysis isused to reduce the system to a free boundary problem. This approximationis then used to derive predictions for the steady-state penetrationand profiles of the temperature and electric fields. These solutionsare valid for arbitrary values of the electric conductivity,and thus extend the previous (small conductivity) results foundin the literature. A quasi-static approximation for the electric field is thenused to obtain an ordinary differential equation for the relaxationdynamics to the steady state. This equation appears to accuratelydescribe the time scale of the electric field's evolution bothwith and without the presence of a strongly coupled temperaturefront, and may be of wider interest than the model for microwaveheating studied here.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号