全文获取类型
收费全文 | 15700篇 |
免费 | 1636篇 |
国内免费 | 1226篇 |
专业分类
化学 | 4025篇 |
晶体学 | 75篇 |
力学 | 4278篇 |
综合类 | 186篇 |
数学 | 7056篇 |
物理学 | 2942篇 |
出版年
2024年 | 18篇 |
2023年 | 153篇 |
2022年 | 202篇 |
2021年 | 256篇 |
2020年 | 432篇 |
2019年 | 390篇 |
2018年 | 414篇 |
2017年 | 499篇 |
2016年 | 509篇 |
2015年 | 437篇 |
2014年 | 670篇 |
2013年 | 1658篇 |
2012年 | 713篇 |
2011年 | 802篇 |
2010年 | 698篇 |
2009年 | 822篇 |
2008年 | 804篇 |
2007年 | 886篇 |
2006年 | 864篇 |
2005年 | 818篇 |
2004年 | 727篇 |
2003年 | 693篇 |
2002年 | 1259篇 |
2001年 | 556篇 |
2000年 | 524篇 |
1999年 | 456篇 |
1998年 | 459篇 |
1997年 | 334篇 |
1996年 | 292篇 |
1995年 | 233篇 |
1994年 | 184篇 |
1993年 | 125篇 |
1992年 | 137篇 |
1991年 | 107篇 |
1990年 | 85篇 |
1989年 | 55篇 |
1988年 | 45篇 |
1987年 | 44篇 |
1986年 | 34篇 |
1985年 | 38篇 |
1984年 | 32篇 |
1983年 | 26篇 |
1982年 | 15篇 |
1981年 | 10篇 |
1980年 | 8篇 |
1979年 | 10篇 |
1978年 | 5篇 |
1977年 | 5篇 |
1973年 | 4篇 |
1957年 | 3篇 |
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
71.
Arun Kumar 《哲学杂志》2013,93(23):2947-2956
Dislocations have been considered as mechanically unstable defects in bulk crystals, ignoring the Peierls oscillations. Eshelby [J. Appl. Phys. 24 (1953) p.176] had showed that a screw dislocation can be stable in a thin cylinder. In the current work, considering Eshelby's example of an edge dislocation in a single crystalline plate, we show that an edge dislocation can be stable in a finite crystal. Using specific examples, we also show that the position of stability of an edge dislocation can be off-centre. This shift in the stability from the centre marks the transition from a stable dislocation to an unstable one. The above-mentioned tasks are achieved by simulating edge dislocations using the finite element method. 相似文献
72.
利用有限元方法求解:S-参数矩阵,研究了过模慢波结构对圆波导TM01,TM02模的反射特性,分析了在慢波结构末端加入谐振腔后,由于两端口的不对称性而造成的对反射特性影响。结果表明,在TM01的π模频率附近,慢波结构和谐振腔组成的系统对无谐振腔一侧端口入射TM01模的反射增大,而对有谐振腔一侧端口入射TM01模的反射减小。根据计算结果,解释了普通多波切伦柯夫振荡器所用慢波结构周期数较多的原因,说明了在多波切伦柯夫振荡器中引入谐振腔后,不但可以减少所用慢波结构周期数,而且有利于提高微波输出效率。 相似文献
73.
T.M. Hatem 《哲学杂志》2013,93(33):3087-3109
A three-dimensional multiple-slip dislocation density-based crystalline formulation, specialized finite-element formulations and Voronoi tessellations adapted to martensitic orientations were used to investigate large strain inelastic deformation modes and dislocation density evolution in martensitic microstructures. The formulation is based on accounting for variant morphologies and orientations, retained austenite and initial dislocation densities that are uniquely inherent to martensitic microstructures. The effects of parent austenite orientation and retained austenite were also investigated for heterogeneous fcc/bcc crystalline structures. Furthermore, the formulation was used to investigate microstructures mapped directly from SEM/EBSD images of martensitic steel alloys. The analysis indicates that variant morphology and orientations have a direct effect on dislocation density accumulation and inelastic localization in martensitic microstructures, and that lath directions, orientations and arrangements are critical characteristics of high strength martensitic deformation and behavior. 相似文献
74.
Xinfang Hu Gongfang Hu Kaitlyn Crawford Christopher B. Gorman 《Journal of polymer science. Part A, Polymer chemistry》2013,51(21):4643-4649
The growth and degradation of poly(glycolic acid) (PGA) and poly(ε‐caprolactone) (PCL) brushes were compared. Using tin (octanoate) as the catalyst, optimal conditions were found for growth of each polyester brush from the hydroxy‐terminated silicon surface via ring‐opening polymerization. PCL brushes grew thicker at elevated temperatures but the thickest PGA brushes grew at room temperature. Unlike bulk polyesters that can degrade under both acidic and basic conditions, the confined surface polyester brushes only degraded under neutral or basic conditions. The degradation mechanism of grafted polyester brushes was probed through a blocking test. It was shown that the terminal hydroxy groups of these polyester brushes were essential to the degradation process indicating a preferential backbiting mechanism. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4643–4649 相似文献
75.
Anna‐Marie Zorn Christopher Barner‐Kowollik 《Journal of polymer science. Part A, Polymer chemistry》2012,50(12):2366-2377
In the present study, n‐butyl acrylate macromonomer (BAMM) (Mn = 1900 g mol?1; PDI = 1.96) has been synthesized via a high‐temperature polymerization process. Subsequently, the olefinic termini of the BAMM have been transformed into a diol via a dihydroxylation process using KMnO4 as an oxidizing agent. The OH‐terminated macroinitiator pBA(OH)2 has subsequently been employed for the ring‐opening polymerization (ROP) of ε‐caprolactone via various catalytic systems, that is, organo‐(1,5,7‐triazabicyclo[4.4.0]dec‐5‐ene), metal (tin(II) 2‐ethylhexanoate), and enzymatic catalysis (Novozym® 435). The obtained pBA‐b‐pCL block copolymers and the initiation efficiency of the BAMM macroinitiator have been investigated via size exclusion chromatography (SEC), electrospray ionization–mass spectrometry (ESI‐MS) hyphenated with SEC and liquid chromatography at the critical conditions of both poly(ε‐caprolactone) (pCL) and pBA. The in vitro enzyme catalysis (eROP) approach proved to be the most efficient catalysis system due to minor transesterification side reactions during the polymerization process. However, side reactions such as transesterifications occur in each catalytic system and—while they cannot be suppressed—they can be minimized. The species generated during the eROP process include the desired block copolymer pBA‐b‐pCL as main species as well as pCL homopolymer and residual macroinitiator pBA(OH)2. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
76.
An improved progressive preconditioning method for analyzing steady inviscid and laminar flows around fully wetted and sheet‐cavitating hydrofoils is presented. The preconditioning matrix is adapted automatically from the pressure and/or velocity flow‐field by a power‐law relation. The cavitating calculations are based on a single fluid approach. In this approach, the liquid/vapour mixture is treated as a homogeneous fluid whose density is controlled by a barotropic state law. This physical model is integrated with a numerical resolution derived from the cell‐centered Jameson's finite volume algorithm. The stabilization is achieved via the second‐and fourth‐order artificial dissipation scheme. Explicit four‐step Runge–Kutta time integration is applied to achieve the steady‐state condition. Results presented in the paper focus on the pressure distribution on hydrofoils wall, velocity profiles, lift and drag forces, length of sheet cavitation, and effect of the power‐law preconditioning method on convergence speed. The results show satisfactory agreement with numerical and experimental works of others. The scheme has a progressive effect on the convergence speed. The results indicate that using the power‐law preconditioner improves the convergence rate, significantly. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
77.
When simulating free‐surface flows using the finite element method, there are many cases where the governing equations require information which must be derived from the available discretized geometry. Examples are curvature or normal vectors. The accurate computation of this information directly from the finite element mesh often requires a high degree of refinement—which is not necessarily required to obtain an accurate flow solution. As a remedy and an option to be able to use coarser meshes, the representation of the free surface using non‐uniform rational B‐splines (NURBS) curves or surfaces is investigated in this work. The advantages of a NURBS parameterization in comparison with the standard approach are discussed. In addition, it is explored how the pressure jump resulting from surface tension effects can be handled using doubled interface nodes. Numerical examples include the computation of surface tension in a two‐phase flow as well as the computation of normal vectors as a basis for mesh deformation methods. For these examples, the improvement of the numerical solution compared with the standard approaches on identical meshes is shown. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
78.
Nikolaos Athanasios Malamataris 《国际流体数值方法杂志》2012,70(1):71-95
The influence of aspect ratio in three‐dimensional, numerical experiments of separated flows is studied in the case of the backward‐facing step at Reynolds numbers 600, 800, and 950. The computational domain is designed as an actual laboratory experiment. The governing equations are the steady state, isothermal, and incompressible Navier–Stokes equations. The expansion ratio of the computational domain is 1:2. The aspect ratio varies from 1:10 to 1:40. The results of the computations focus on the spanwise variations of the length and the strength of the two eddies along the lower and upper wall. It is concluded that both numerical and laboratory experiments should be designed with an aspect ratio of at least 1:20, if only the accuracy of the position of the detachment and the re‐attachment points matters. If the accuracy of the shear‐stress distributions is also taken into account, then an aspect ratio of at least 1:30 should be chosen. Finally, if the magnitudes of the vortex centers are also considered, then only the aspect ratio of 1:40 qualifies for a realization of two‐dimensional flow conditions in the plane of symmetry. This is contrary to the common practice in the field, at least from the side of laboratory experiments, where an aspect ratio of 1:10 is still considered adequate for this purpose. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
79.
Norio Kondo 《国际流体数值方法杂志》2012,70(2):158-185
We present numerical results for in‐line and cross‐flow vibrations of a circular cylinder, which is immersed in a uniform flow and is elastically supported by damper‐spring systems to compute vibrations of a rigid cylinder. In the case of a circular cylinder with a low Scruton number, it is well‐known that two types of self‐excited vibrations appear in the in‐line direction in the range of low reduced velocities. On the other hand, a cross‐flow vibration of the circular cylinder can be excited in the range of high reduced velocities. Therefore, we compute the flow‐induced vibrations of the circular cylinder in the wide range of the reduced velocities at low and high Scruton numbers and discuss about excitation mechanisms in the in‐line and cross‐flow directions. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
80.
The design of the mold and the choice of the injection parameters for metal injection molding (MIM) is required to maintain homogeneity of the filled mixture. However, powder segregation is unavoidable in MIM because of the significant difference in densities of the metallic powder and the polymer binder. To achieve an effective prediction of segregation effect, a biphasic model based on mixture theory is employed. The viscous behaviors of each phase and the interaction coefficient between the flows of the two phases should be determined. The solution of two coupled Navier–Stokes equations results in a tremendous computation effort. The previous development of an explicit algorithm makes the biphasic simulation much faster than that of the classic methods. However, it is strongly desired to reduce or even eliminate the numerous global solutions for pressure fields at each time step. Hence, a new vectorial algorithm is proposed and developed to perform the simulation only by vectorial operations. It provides the anticipated efficiency in the simulation of biphasic modeling, and the advantage to use the classic elements of equal‐order interpolations. Some results produced by the two algorithms are compared with the experimental values to validate the new vectorial algorithm. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献