首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   17篇
  国内免费   3篇
化学   1篇
综合类   3篇
数学   116篇
  2024年   1篇
  2023年   2篇
  2022年   3篇
  2021年   1篇
  2020年   4篇
  2019年   6篇
  2018年   8篇
  2017年   8篇
  2016年   6篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   3篇
  2011年   4篇
  2010年   11篇
  2009年   9篇
  2008年   3篇
  2007年   4篇
  2006年   9篇
  2005年   4篇
  2004年   4篇
  2003年   5篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1986年   1篇
排序方式: 共有120条查询结果,搜索用时 31 毫秒
101.
In this paper, we give combinatorial proofs of some determinantal identities. In fact, we give a combinatorial proof of a theorem of R. P. Stanley regarding the enumeration of paths in acyclic digraphs along with some interesting applications. We also give an almost visual proof of a recent result of Oliver Knill, namely ‘The generalized Cauchy–Binet Theorem.’  相似文献   
102.
For digraphs D and H, a mapping f:V(D)→V(H) is a homomorphism of D to H if uvA(D) implies f(u)f(v)∈A(H). For a fixed digraph H, the homomorphism problem is to decide whether an input digraph D admits a homomorphism to H or not, and is denoted as HOM(H).An optimization version of the homomorphism problem was motivated by a real-world problem in defence logistics and was introduced in Gutin, Rafiey, Yeo and Tso (2006) [13]. If each vertex uV(D) is associated with costs ci(u),iV(H), then the cost of the homomorphism f is ∑uV(D)cf(u)(u). For each fixed digraph H, we have the minimum cost homomorphism problem forH and denote it as MinHOM(H). The problem is to decide, for an input graph D with costs ci(u),uV(D),iV(H), whether there exists a homomorphism of D to H and, if one exists, to find one of minimum cost.Although a complete dichotomy classification of the complexity of MinHOM(H) for a digraph H remains an unsolved problem, complete dichotomy classifications for MinHOM(H) were proved when H is a semicomplete digraph Gutin, Rafiey and Yeo (2006) [10], and a semicomplete multipartite digraph Gutin, Rafiey and Yeo (2008) [12] and [11]. In these studies, it is assumed that the digraph H is loopless. In this paper, we present a full dichotomy classification for semicomplete digraphs with possible loops, which solves a problem in Gutin and Kim (2008) [9].  相似文献   
103.
A digraph D is k-ordered if for every sequence S:v 1,v 2,…,v k of k distinct vertices,there exists a cycle C such that C encounters the vertices of S in the specified order.In particular,we say that D is k-ordered hamiltonian if for every sequence S:v 1,v 2,…,v k of k distinct vertices,there exists a hamiltonian cycle C such that the vertices of S are encountered on C in the specified order.In this paper,sufficient conditions for digraphs to be ordered and ordered hamiltonian have been given.  相似文献   
104.
Let TTn be a transitive tournament on n vertices. It is known Görlich, Pil?niak, Wo?niak, (2006) [3] that for any acyclic oriented graph of order n and size not greater than , two graphs isomorphic to are arc-disjoint subgraphs of TTn. In this paper, we consider the problem of embedding of acyclic oriented graphs into their complements in transitive tournaments. We show that any acyclic oriented graph of size at most is embeddable into all its complements in TTn. Moreover, this bound is generally the best possible.  相似文献   
105.
We prove that every 3-strong semicomplete digraph on at least 5 vertices contains a spanning 2-strong tournament. Our proof is constructive and implies a polynomial algorithm for finding a spanning 2-strong tournament in a given 3-strong semicomplete digraph. We also show that there are infinitely many (2k−2)-strong semicomplete digraphs which contain no spanning k-strong tournament and conjecture that every(2k−1)-strong semicomplete digraph which is not the complete digraph on 2k vertices contains a spanning k-strong tournament.  相似文献   
106.
107.
We show that a digraph which contains a directed 2-factor and has minimum in-degree and out-degree at least four has two non-isomorphic directed 2-factors. As a corollary, we deduce that every graph which contains a 2-factor and has minimum degree at least eight has two non-isomorphic 2-factors. In addition we construct: an infinite family of 3-diregular digraphs with the property that all their directed 2-factors are Hamilton cycles, an infinite family of 2-connected 4-regular graphs with the property that all their 2-factors are isomorphic, and an infinite family of cyclically 6-edge-connected cubic graphs with the property that all their 2-factors are Hamilton cycles.  相似文献   
108.
109.
设给出了(h,ψ)-η限长路径问题是图论中的Menger定理的变形和推广,在实时容错网络设计和分析中有重要意义。对于给定的正整数d,Ad(D)表示网络D中任何距离至少为2的两顶点之间内点不交且长度都不超过d的路的最大条数;Bd(D)表示D的顶点子集B中的最小顶点数使得D-B的直径大于d.已证明确定Ad(D)的问题是NPC问题,而且显然有不等式Ad(D)≤Bd(D)。本文考虑D为超立方体网络、De Bruijn网络和Kautz网络,对d的不同值确定了Ad(D)及Bd(D),而且均有Ad(D)=Bd(D)。  相似文献   
110.
A spanning subgraph F of a graph G is called perfect if F is a forest, the degree of each vertex x in F is odd, and each tree of F is an induced subgraph of G. Alex Scott (Graphs Combin 17 (2001), 539–553) proved that every connected graph G contains a perfect forest if and only if G has an even number of vertices. We consider four generalizations to directed graphs of the concept of a perfect forest. While the problem of existence of the most straightforward one is NP‐hard, for the three others this problem is polynomial‐time solvable. Moreover, every digraph with only one strong component contains a directed forest of each of these three generalization types. One of our results extends Scott's theorem to digraphs in a nontrivial way.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号