首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2643篇
  免费   432篇
  国内免费   204篇
化学   2851篇
力学   32篇
综合类   7篇
数学   135篇
物理学   254篇
  2024年   11篇
  2023年   92篇
  2022年   181篇
  2021年   226篇
  2020年   220篇
  2019年   158篇
  2018年   120篇
  2017年   119篇
  2016年   213篇
  2015年   181篇
  2014年   228篇
  2013年   256篇
  2012年   185篇
  2011年   196篇
  2010年   126篇
  2009年   143篇
  2008年   138篇
  2007年   124篇
  2006年   77篇
  2005年   71篇
  2004年   56篇
  2003年   42篇
  2002年   25篇
  2001年   15篇
  2000年   16篇
  1999年   17篇
  1998年   10篇
  1997年   4篇
  1996年   3篇
  1995年   7篇
  1994年   6篇
  1993年   1篇
  1992年   5篇
  1991年   2篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1971年   1篇
排序方式: 共有3279条查询结果,搜索用时 2 毫秒
81.
Liposomes are effective therapeutic delivery nanocarriers due to their ability to encapsulate and enhance the pharmacokinetic properties of a wide range of therapeutics. Two primary areas in which improvement is needed for liposomal drug delivery is to enhance the ability to infiltrate cells and to facilitate derivatization of the liposome surface. Herein, we report a liposome platform incorporating a cyclic disulfide lipid (CDL) for the dual purpose of enhancing cell entry and functionalizing the liposome membrane through thiol-disulfide exchange. In order to accomplish this, CDL-1 and CDL-2 , composed of lipoic acid (LA) or asparagusic acid (AA) appended to a lipid scaffold, were designed and synthesized. A fluorescence-based microplate immobilization assay was implemented to show that these compounds enable convenient membrane decoration through reaction with thiol-functionalized small molecules. Additionally, fluorescence microscopy experiments indicated dramatic enhancements in cellular delivery when CDLs were incorporated within liposomes. These results demonstrate that multifunctional CDLs serve as an exciting liposome system for surface decoration and enhanced cellular delivery.  相似文献   
82.
Atopic dermatitis is characterized by leukocyte migration into the skin dermis and typically driven by excessive chemokine production at the site of inflammation. Conventional topical formulations such as gels, creams, and ointments are insufficient for this treatment because of low penetration of drug molecules into the targeted skin tissues. Herein, using a simple, green, sustainable strategy, we have developed novel primary zein nanoparticles embedded in curcumin (Cur) and coated with silk sericin (ZHSCs) for the topical delivery of Cur to penetrate into the dermis and exercise anti-dermatitis effects on the lesion with minimal side-effects. Transdermal delivery experiments and porcine skin fluorescence imaging indicated that ZHSCs facilitate the penetration of Cur across the epidermis layer of skin to reach deep-seated sites. Notably, ZHSCs = 1:0.25 (zein-to-silk sericin mass ratios of 1:0.25) markedly elevated the skin permeability and cumulative turnover of Cur transferred, which were provided a greater than a 3.8-fold increase relative to free Cur. The special nanoparticles of ZHS = 1:0.25 possessed the deepest localization depth and experience a transition of the particle structure and core-shell separation after penetrating into the dermis of skin. In a cell model of dermatitis induced by tumor necrosis factor α/interferon γ co-stimulation, compared with free Cur, Cur-loaded ZHS nanoparticles down-regulated the generation of inflammatory cytokines and chemokines in keratinocytes through suppression of the nuclear translocation of NF-κBp65 and hence exerted an anti-dermatitis effect. This strategy may provide new avenues and direction for the demanding issues of valid topical delivery systems.  相似文献   
83.
Ultrasound has been recognized as an exciting tool to enhance the therapeutic efficacy in tumor chemotherapy owing to the triggered drug release, facilitated intracellular drug delivery, and improved spatial precision. Aiming for a precise localized drug delivery, novel dendritic polyurethane-based prodrug (DOX-DPU-PEG) was fabricated with a drug content of 18.9% here by conjugating DOX onto the end groups of the functionalized dendritic polyurethane via acid-labile imine bonds. It could easily form unimolecular micelles around 38 nm. Compared with the non-covalently drug-loaded unimolecular micelles (DOX@Ph-DPU-PEG), they showed excellent pH/ultrasound dual-triggered drug release performance, with drug leakage of only 4% at pH 7.4, but cumulative release of 14% and 88% at pH 5.0 without and with ultrasound, respectively. The ultrasound responsiveness was attributed to the unique strawberry-shaped topological structure of the DOX-DPU-PEG, in which DOX was embedded in the skin layer of the hydrophobic DPU cores. With ultrasound, the DOX-DPU-PEG unimolecular micelles possessed enhanced tumor growth inhibition than free DOX but showed no obvious cytotoxicity on the tumor cells without ultrasound. Such feature makes them promising potential for precise localized drug delivery.  相似文献   
84.
陈雅琼  宋洪东  吴懋  陆扬  管骁 《化学进展》2022,34(10):2267-2282
蛋白质-多糖复合体系作为生物活性物质传递系统的壁材,有着人工合成聚合物或无机物等其他材料不可比拟的多重优势。本文就蛋白质和多糖之间的连接方式及蛋白质-多糖复合体系形成传递系统的多种形式进行了综述,以及对此领域的发展趋势进行了展望。结合蛋白质和多糖的结构特点,二者之间的链接方式分为非共价结合的物理共聚,和共价结合的美拉德偶联、化学交联、酶催化交联等方式,文中分别对各种连接方式的原理和机理,以及其影响因素做了深入阐述。以蛋白质-多糖复合体系为壁材对活性物质的传递形式大体上分成乳化系统、胶束、纳米凝胶、分子复合物以及壳核结构等系统。不同的活性物质的特征和传递需求,可针对性地选择合适结构的蛋白质和多糖种类以及二者的连接方式和传递系统的形式。并且,随着研究的逐步发展和推进,此领域的发展趋势朝着智能化和靶向性的方向进行。目前活性物质的蛋白质-多糖复合体系的传递系统,还依然面临着系统设计、评价和应用等多方面的挑战,这就要求我们在更全面更深入了解认识其对活性物质影响和功效的基础上,安全合理地设计和深入细致地评价活性成分的传递系统。  相似文献   
85.
(1) Background: Pulsed electric field (PEF) techniques are commonly used to support the delivery of various molecules. A PEF seems a promising method for low permeability drugs or when cells demonstrate therapy resistance and the cell membrane becomes an impermeable barrier. (2) Methods: In this study, we have used doxorubicin-resistant and sensitive models of human breast cancer (MCF-7/DX, MCF-7/WT) and colon cancer cells (LoVo, LoVoDX). The study aimed to investigate the susceptibility of the cells to doxorubicin (DOX) and electric fields in the 20–900 ns pulse duration range. The viability assay was utilized to evaluate the PEF protocols’ efficacy. Cell confluency and reduced glutathione were measured after PEF protocols. (3) Results: The obtained results showed that PEFs significantly supported doxorubicin delivery and cytotoxicity after 48 and 72 h. The 60 kV/cm ultrashort pulses × 20 ns × 400 had the most significant cytotoxic anticancer effect. The increase in DOX concentration provokes a decrease in cell viability, affected cell confluency, and reduced GSSH when combined with the ESOPE (European Standard Operating Procedures of Electrochemotherapy) protocol. Additionally, reactive oxygen species after PEF and PEF-DOX were detected. (4) Conclusions: Ultrashort electric pulses with low DOX content or ESOPE with higher DOX content seem the most promising in colon and breast cancer treatment.  相似文献   
86.
Polyion complex (PIC) micelles have gained an increasing interest, mainly as promising nano-vehicles for the delivery of various hydrophilic charged (macro)molecules such as DNA or drugs to the body. The aim of the present study is to construct novel functional PIC micelles bearing cell targeting ligands on the surface and to evaluate the possibility of a hydrophobic drug encapsulation. Initially, a pair of functional oppositely charged peptide-based hybrid diblock copolymers were synthesized and characterized. The copolymers spontaneously co-assembled in water into nanosized PIC micelles comprising a core of a polyelectrolyte complex between poly(L-aspartic acid) and poly(L-lysine) and a biocompatible mixed shell of disaccharide-modified poly(ethylene glycol) and poly(2-hydroxyethyl methacrylate). Depending on the molar ratio between the oppositely charged groups, PIC micelles varying in surface charge were obtained and loaded with the natural hydrophobic drug curcumin. PIC micelles’ drug loading efficiency, in vitro drug release profiles and antioxidant activity were evaluated. The preliminary results indicate that PIC micelles can be successfully used as carriers of hydrophobic drugs, thus expanding their potential application in nanomedicine.  相似文献   
87.
The ultrasound-induced cleavage of covalent and non-covalent bonds to activate drugs (sonopharmacology) is a promising concept to gain control over the action of active pharmaceutical ingredients by an external trigger. Previously, linear polymer architectures bearing drug payloads were exploited for drug release by using the principles of polymer mechanochemistry. In this work, the carrier design is altered by the polymer topology to improve the ultrasound-triggered release of covalently anchored drugs from polymer scaffolds. We use microgels crosslinked by mechanoresponsive disulfides and copolymerized with Diels-Alder adducts of furylated payload molecules and acetylenedicarboxylate. Force-induced thiol formation induces a Michael-type addition liberating the payload from the microgels. The use of microgels significantly reduces sonication times compared to linear polymer chains and shields the cargo efficiently from non-triggered activation using ultrasound that produces inertial cavitation at a frequency of 20 kHz as model condition.  相似文献   
88.
In this study, a model hydrophilic drug (porphyrin) was encapsulated within hydrophobic polylactic acid (PLA) nanoparticles (NPs) with different crystallinity and the relevant release behaviors were investigated. The crystalline modification was done using a modified nanoprecipitation method, where homo and stereocomplexed PLA NPs with different average diameters based on varying polymer concentrations and solvent/nonsolvent ratios (S/N) were prepared. Entrapment efficiency and drug release of sterocomplexed-PLA NPs were compared with neat poly(l -lactic acid) (PLLA) NPs. Furthermore, to get the more sustained release, porphyrin-loaded NPs were immobilized within electrospun poly(d ,l -lactide-co-glycolide (PLGA) nanofibers (NFs). Outcomes revealed that solution concentration and solvent/nonsolvent ratio play significant roles in the formation of homo and stereocomplexed NPs. On the other hand, it was found that the formation of stereocrystals did not significantly affect the size and morphology of NPs compared with neat NPs. With regard to the entrapment efficiency and drug content, stereocomplexd-PLA NPs behave relatively the same as neat PLLA NPs while the more sustained release was observed for stereocomplexed NPs. Also, it was observed that electrospinning of PLGA solution loaded by NPs led to the uniform distribution of NPs into PLGA fibers. Encapsulating the drug-loaded NPs into nanofibers decreased the rate of drug release by 50% after 24 h, compared with direct loading of drug into PLGA NFs. We conclude that it is possible to tune the entrapment efficiency and modify the release rate of the drug by giving small changes in the process parameters without altering the physical properties of the original drug substance and polymer.  相似文献   
89.
微小RNA(microRNA,miRNA)和短链干扰RNA (small interfering RNA,siRNA)是两类具有调节基因表达功能的内源性非编码性小RNA分子.它们已成为多种疾病的潜在治疗药物,逐渐被应用于基因治疗中,而将小RNA应用于基因治疗亟需一种安全高效的递送载体.壳聚糖及其衍生物作为一种可降解、低...  相似文献   
90.
本文以环状单萜醇α-萜品醇、L-薄荷醇及链状单萜醇香叶醇、香茅醇为先导化合物,采用酰氯酯化法合成肉豆蔻酸α-萜品醇酯(TER-C14)、肉豆蔻酸-L-薄荷醇酯(MEN-C14)、肉豆蔻酸香叶醇酯(GER-C14)和肉豆蔻酸香茅醇酯(CIT-C14),并考察单萜醇及其肉豆蔻酯作为促透剂对布南色林(Blo)的促透效果。通过体外经皮渗透实验、体外释放实验和分子模拟技术初步探究单萜醇及其肉豆蔻酯的促透机制。结果显示,当GER-C14或CIT-C14为促透剂时,均有显著的促透效果(P<0.05),并且24h经皮累积透过量是空白组的4.84倍和4.45倍。促透机制为肉豆蔻酸单萜醇酯破坏药物与神经酰胺之间的氢键相互作用,增加脂质迁移率和药物的自由能,从而促进药物的渗透。肉豆蔻酸单萜醇酯有望作为新型促透剂在经皮给药系统中广泛应用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号