全文获取类型
收费全文 | 7260篇 |
免费 | 749篇 |
国内免费 | 414篇 |
专业分类
化学 | 2239篇 |
晶体学 | 57篇 |
力学 | 625篇 |
综合类 | 43篇 |
数学 | 2893篇 |
物理学 | 2566篇 |
出版年
2024年 | 12篇 |
2023年 | 82篇 |
2022年 | 144篇 |
2021年 | 162篇 |
2020年 | 222篇 |
2019年 | 231篇 |
2018年 | 194篇 |
2017年 | 204篇 |
2016年 | 229篇 |
2015年 | 195篇 |
2014年 | 275篇 |
2013年 | 716篇 |
2012年 | 297篇 |
2011年 | 357篇 |
2010年 | 284篇 |
2009年 | 362篇 |
2008年 | 403篇 |
2007年 | 435篇 |
2006年 | 372篇 |
2005年 | 348篇 |
2004年 | 345篇 |
2003年 | 317篇 |
2002年 | 270篇 |
2001年 | 260篇 |
2000年 | 229篇 |
1999年 | 210篇 |
1998年 | 170篇 |
1997年 | 177篇 |
1996年 | 115篇 |
1995年 | 107篇 |
1994年 | 102篇 |
1993年 | 83篇 |
1992年 | 68篇 |
1991年 | 69篇 |
1990年 | 38篇 |
1989年 | 26篇 |
1988年 | 31篇 |
1987年 | 32篇 |
1986年 | 29篇 |
1985年 | 45篇 |
1984年 | 31篇 |
1983年 | 23篇 |
1982年 | 25篇 |
1981年 | 19篇 |
1980年 | 18篇 |
1979年 | 17篇 |
1978年 | 7篇 |
1977年 | 11篇 |
1976年 | 4篇 |
1973年 | 10篇 |
排序方式: 共有8423条查询结果,搜索用时 69 毫秒
1.
P.A. Ramachandran 《Numerical Methods for Partial Differential Equations》2006,22(4):831-846
Time‐dependent differential equations can be solved using the concept of method of lines (MOL) together with the boundary element (BE) representation for the spatial linear part of the equation. The BE method alleviates the need for spatial discretization and casts the problem in an integral format. Hence errors associated with the numerical approximation of the spatial derivatives are totally eliminated. An element level local cubic approximation is used for the variable at each time step to facilitate the time marching and the nonlinear terms are represented in a semi‐implicit manner by a local linearization at each time step. The accuracy of the method has been illustrated on a number of test problems of engineering significance. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2006 相似文献
2.
Mehdi Dehghan 《Numerical Methods for Partial Differential Equations》2002,18(2):193-202
Developement of numerical methods for obtaining approximate solutions to the three dimensional diffusion equation with an integral condition will be carried out. The numerical techniques discussed are based on the fully explicit (1,7) finite difference technique and the fully implicit (7,1) finite difference method and the (7,7) Crank‐Nicolson type finite difference formula. The new developed methods are tested on a problem. Truncation error analysis and numerical examples are used to illustrate the accuracy of the new algorithms. The results of numerical testing show that the numerical methods based on the finite difference techniques discussed in the present article produce good results. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 193–202, 2002; DOI 10.1002/num.1040 相似文献
3.
We treat here of the question of absorbing boundary conditionsfor nonlinear diffusion equations. We use the conditions designedfor the linear equation, we prove them to be well posed forthe nonlinear problem, and through numerical experiments thatthey are well suited for reactiondiffusion equations. 相似文献
4.
Yasuyuki Agari Kiyofumi Sakai Yosikazu Kano Ryoki Nomura 《Journal of Polymer Science.Polymer Physics》2007,45(21):2972-2981
We prepared biodegradable poly(ethylene oxide) (PEO)/poly(L ‐lactic acid) (PLLA) graded blends by the dissolution–diffusion process, and discussed the biodegradability and tensile strength of the graded blends by comparing isotropic blend and PLLA only. All the graded blends were degraded more largely than the PLLA only and isotropic blend (PEO: 37.5 wt %), which had the same content as the total content of those graded blends. The graded blend having most excellent wide compositional gradient was degraded most largely with the enzyme. Thus, graded structure of the blends promoted their biodegradabilities large. It was considered that the dissolution of PEO with water increased the surface area attacked by the enzyme, while PEO caught PLLA oligomers to promote the biodegradation of PLLA. Then, the biodegradabilities of the graded blends were suppressed by the increasing crystallinity of PLLA. Furthermore, the strengths of all the graded blends were larger than those of the isotropic blend. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2972–2981, 2007 相似文献
5.
The diffraction efficiency and morphology of the transmission modes of holographic polymer dispersed liquid crystals were studied with respect to the molecular structure of poly(urethane acrylate) (PUA), the film (polymer/liquid crystal) and resin (oligomer/monomer) compositions, and the cell thickness. PUA, based on N‐vinylpyrrolidone and ethyl hexyl acrylate, with low‐molecular‐weight poly(propylene glycol) at a low oligomer content, showed high diffraction efficiency. The results were interpreted in terms of the monomer reactivity and polymer elasticity. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 613–620, 2004 相似文献
6.
Kangseok Lee Sang Eun Shim Byung H. Lee Seong Uk Hong Soonja Choe 《Journal of Polymer Science.Polymer Physics》2004,42(6):1114-1126
The desorption behavior of a surfactant in a linear low‐density polyethylene (LLDPE) blend at elevated temperatures of 50, 70, and 80 °C was studied with Fourier transform infrared spectroscopy. The composition of the LLDPE blend was 70:30 LLDPE/low‐density polyethylene. Three different specimens (II, III, and IV) were prepared with various compositions of a small molecular penetrant, sorbitan palmitate (SPAN‐40), and a migration controller, poly(ethylene acrylic acid) (EAA), in the LLDPE blend. The calculated diffusion coefficient (D) of SPAN‐40 in specimens II, III, and IV, between 50 and 80 °C, varied from 1.74 × 10?11 to 6.79 × 10?11 cm2/s, from 1.10 × 10?11 to 5.75 × 10?11 cm2/s, and from 0.58 × 10?11 to 4.75 × 10?11 cm2/s, respectively. In addition, the calculated activation energies (ED) of specimens II, III, and IV, from the plotting of ln D versus 1/T between 50 and 80 °C, were 42.9, 52.7, and 65.6 kJ/mol, respectively. These values were different from those obtained between 25 and 50 °C and were believed to have been influenced by the interference of Tinuvin (a UV stabilizer) at elevated temperatures higher than 50 °C. Although the desorption rate of SPAN‐40 increased with the temperature and decreased with the EAA content, the observed spectral behavior did not depend on the temperature and time. For all specimens stored over 50 °C, the peak at 1739 cm?1 decreased in a few days and subsequently increased with a peak shift toward 1730 cm?1. This arose from the carbonyl stretching vibration of Tinuvin, possibly because of oxidation or degradation at elevated temperatures. In addition, the incorporation of EAA into the LLDPE blend suppressed the desorption rate of SPAN‐40 and retarded the appearance of the 1730 cm?1 peak. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1114–1126, 2004 相似文献
7.
Richard Kotek Kyeong Pang Ben Schmidt Alan Tonelli 《Journal of Polymer Science.Polymer Physics》2004,42(23):4247-4254
Poly(ethylene isophthalate) (PEI) was synthesized for this research with essentially a condensation polymerization of isophthalic acid and ethylene glycol catalyzed by zinc acetate and antimony trioxide. Several samples were obtained, and their characteristics were observed and compared with poly(ethylene terephthalate) (PET). The synthesized PEI samples were chemically identified by 1H NMR. Thermal analysis with differential scanning calorimetry (DSC) yielded results that indicate the samples were primarily amorphous, with a glass‐transition temperature of 55–60 °C. Molecular weights of these PEI samples were also obtained through intrinsic viscosity measurements (Mark–Houwink equation). Molecular weights varied with conditions of the polymerization, and the highest molecular weight achieved was 21,000 g/mol. Finally, the diffusion coefficient, solubility, and permeability of CO2 gas in PEI were measured and found to be substantially lower than in PET, as anticipated from their isomeric chemical structures. This is because in PET the phenyl rings are substituted in the para (1,4) positions, which allows for their facile flipping, effectively permitting gases to pass through. However, the meta‐substituted phenyl rings in PEI do not permit such ring flipping, and thus PEI may be more suitable for barrier applications. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4247–4254, 2004 相似文献
8.
The gas‐transport properties of poly[2,6‐toluene‐2,2‐bis(3,4‐dicarboxylphenyl)hexafluoropropane diimide] (6FDA‐2,6‐DAT) have been investigated. The sorption behavior of dense 6FDA‐2,6‐DAT membranes is well described by the dual‐mode sorption model and has certain relationships with the critical temperatures of the penetrants. The solubility coefficient decreases with an increase in either the pressure or temperature. The temperature dependence of the diffusivity coefficient increases with an increase in the penetrant size, as the order of the activation energy for the diffusion jump is CH4 > N2 > O2 > CO2. Also, the average diffusion coefficient increases with increasing pressure for all the gases tested. As a combined contribution from sorption and diffusion, permeability decreases with increases in the pressure and the kinetic diameter of the penetrant molecules. Even up to 32.7 atm, no plasticization phenomenon can be observed on flat dense 6FDA‐2,6‐DAT membranes from their permeability–pressure curves. However, just as for other gases, the absolute value of the heat of sorption of CO2 decreases with increasing pressure at a low‐pressure range, but the trend changes when the feed pressure is greater than 10 atm. This implies that CO2‐induced plasticization may occur and reduce the positive enthalpy required to create a site into which a penetrant can be sorbed. Therefore, a better diagnosis of the inherent threshold pressure for the plasticization of a glassy polymer membrane may involve examining the absolute value of the heat of sorption as a function of pressure and identifying the turning point at which the gradient of the absolute value of the heat of sorption against pressure turns from a negative value to a positive one. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 354–364, 2004 相似文献
9.
Matthias Heuchel Martin Bhning Ole Hlck Martin R. Siegert Dieter Hofmann 《Journal of Polymer Science.Polymer Physics》2006,44(13):1874-1897
Atomistic packing models have been created, which help to better understand the experimentally observed swelling behavior of glassy polysulfone and poly (ether sulfone), under CO2 gas pressures up to 50 bar at 308 K. The experimental characterization includes the measurement of the time‐dependent volume dilation of the polymer samples after a pressure step and the determination of the corresponding gas concentrations by gravimetric gas‐sorption measurements. The models obtained by force‐field‐based molecular mechanics and molecular dynamics methods allow a detailed atomistic analysis of representative swelling states of polymer/gas systems, with respect to the dilation of the matrix. Also, changes of free volume distribution and backbone mobility are accessible. The behavior of gas molecules in unswollen and swollen polymer matrices is characterized in terms of sorption, diffusion, and plasticization. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1874–1897, 2006 相似文献
10.
Distribution of melamine in polyester–melamine surface coatings cured under nonisothermal conditions
N. J. W. Gamage D. J. T. Hill C. A. Lukey P. J. Pomery 《Journal of polymer science. Part A, Polymer chemistry》2004,42(1):83-91
The influence of experimental cure parameters on the diffusion of reactive species in polyester–melamine thermoset coatings during curing has been investigated with X‐ray photoelectron spectroscopy and attenuated total reflectance Fourier transform infrared. The diffusion of melamine plays a vital role in the curing process and, therefore, in the ultimate properties of coatings. At a low (<20%) hexamethoxymethylmelamine (HMMM) crosslinker concentration, the matrix composition is uniform, but at high HMMM concentrations, excess HMMM rapidly segregates to the air–coating interface. The rate of migration is governed by the difference in the surface free energies of polyester and HMMM and the concentration gradient of HMMM between the bulk and the surface. An increased rate of energy absorption also increases the rate of migration of HMMM to the surface. A physical model has been proposed to explain this surface segregation phenomenon in terms of cocondensation and self‐condensation reactions. It suggests that an appropriate amount of melamine can be segregated on the surface and allowed to self‐condense to form a desired thickness of a melamine topcoat through the control of the binder composition and cure conditions. This technique can be implemented to apply a melamine topcoat during cure. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 83–91, 2004 相似文献