首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   399篇
  免费   47篇
  国内免费   60篇
化学   187篇
力学   14篇
综合类   1篇
数学   140篇
物理学   164篇
  2024年   1篇
  2023年   8篇
  2022年   10篇
  2021年   19篇
  2020年   30篇
  2019年   18篇
  2018年   10篇
  2017年   16篇
  2016年   19篇
  2015年   17篇
  2014年   18篇
  2013年   29篇
  2012年   17篇
  2011年   12篇
  2010年   24篇
  2009年   27篇
  2008年   24篇
  2007年   28篇
  2006年   24篇
  2005年   10篇
  2004年   9篇
  2003年   15篇
  2002年   16篇
  2001年   18篇
  2000年   13篇
  1999年   15篇
  1998年   14篇
  1997年   1篇
  1996年   8篇
  1995年   4篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   3篇
  1990年   5篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1957年   1篇
排序方式: 共有506条查询结果,搜索用时 15 毫秒
61.
Analysis of crossing fibers is a challenging topic in recent diffusion-weighted imaging (DWI). Resolving crossing fibers is expected to bring major changes to present tractography results based on the standard tensor model. Model free approaches, like Q-ball or diffusion spectrum imaging, as well as multi-tensor models are used to unfold the different diffusion directions mixed in a voxel of DWI data. Due to its seeming simplicity, the two-tensor model (TTM) is applied frequently to provide two positive-definite tensors and the relative population fraction modeling two crossing fiber branches. However, problems with uniqueness and noise instability are apparent. To stabilize the fit, several of the 13 physical parameters are fixed ad hoc, before fitting the model to the data. Our analysis of the TTM aims at fitting procedures where ad hoc parameters are avoided. Revealing sources of instability, we show that the model's inherent ambiguity can be reduced to one scalar parameter which only influences the fraction and the eigenvalues of the TTM, whereas the diffusion directions are not affected. Based on this, two fitting strategies are proposed: the parsimonious strategy detects the main diffusion directions without extra parameter fixation, to determine the eigenvalues and the population fraction an empirically motivated condition must be added. The expensive strategy determines all 13 physical parameters of the TTM by a fit to DWIs alone; no additional assumption is necessary. Ill-posedness of the model in case of noisy data is cured by denoising of the data and by L-curve regularization combined with global minimization performing a least-squares fit of the full model. By model simulations and real data applications, we demonstrate the feasibility of our fitting strategies and achieve convincing results. Using clinically affordable diffusion acquisition paradigms (encoding numbers: 21, 2*15, 2*21) and b values (b = 500–1500 s/mm2), this methodology can place the TTM parameters involved in crossing fibers on a more empirical basis than fitting procedures with technical assumptions.  相似文献   
62.
Pedestrians’ road-crossing behavior can often interrupt traffic flow and cause vehicle queueing. In this paper, we propose some moving rules for modeling the interaction of vehicles and pedestrians. The modified visual angle car-following model is presented for the movement of vehicles with consideration of the lateral effect of waiting pedestrians. The pedestrians’ behavior is summarized as consisting of three steps: pedestrian arrival, gap acceptance, and pedestrian crossing. Some characteristic parameters of pedestrians are introduced to characterize pedestrians’ behavior. Simulation results show that the interaction of vehicles and pedestrians lowers the traffic capacity and increases delays to both vehicles and pedestrians.  相似文献   
63.
The mechanisms including spin-inversion have been systematically studied for the M+ + OCS → MS+ + CO/MO+ + CS (M denotes a transition metal from Sc to Cu) ion-molecule reactions using the automated reaction path search method. We used the lowest mixed-spin potential energy surface obtained from the diagonalization of the spin-coupled Hamiltonian matrix, whose diagonal elements are taken to be the lowest two spin states. This scheme can effectively locate approximate minimum energy crossing points between the two potential energy surfaces with different spin multiplicities. The spin-orbit couplings at spin-inversion points have been calculated to understand the efficiencies of nonadiabatic transitions. The obtained reaction pathways and the calculated spin-orbit couplings are employed to interpret previous experimental studies.  相似文献   
64.
Ab initio and density functional CCSD(T)-F12/cc-pVQZ-f12//B2PLYPD3/6-311G** calculations have been performed to unravel the reaction mechanism of triplet and singlet methylene CH2 with ketene CH2CO. The computed potential energy diagrams and molecular properties have been then utilized in Rice–Ramsperger–Kassel–Marcus-Master Equation (RRKM-ME) calculations of the reaction rate constants and product branching ratios combined with the use of nonadiabatic transition state theory for spin-forbidden triplet-singlet isomerization. The results indicate that the most important channels of the reaction of ketene with triplet methylene lead to the formation of the HCCO + CH3 and C2H4 + CO products, where the former channel is preferable at higher temperatures from 1000 K and above. In the C2H4 + CO product pair, the ethylene molecule can be formed either adiabatically in the triplet electronic state or via triplet-singlet intersystem crossing in the singlet electronic state occurring in the vicinity of the CH2COCH2 intermediate or along the pathway of CO elimination from the initial CH2CH2CO complex. The predominant products of the reaction of ketene with singlet methylene have been shown to be C2H4 + CO. The formation of these products mostly proceeds via a well-skipping mechanism but at high pressures may to some extent involve collisional stabilization of the CH3CHCO and cyclic CH2COCH2 intermediates followed by their thermal unimolecular decomposition. The calculated rate constants at different pressures from 0.01 to 100 atm have been fitted by the modified Arrhenius expressions in the temperature range of 300–3000 K, which are proposed for kinetic modeling of ketene reactions in combustion. © 2018 Wiley Periodicals, Inc.  相似文献   
65.
The 4f-4f emissions from lanthanide trication (Ln3+) complexes are widely used in bioimaging probes. The emission intensity from Ln3+ depends on the surroundings, and thus, the design of appropriate photo-antenna ligands is indispensable. In this study, we focus on two probes for detecting hydrogen peroxide, for which emission intensities from Tb3+ are enhanced chemo-selectively by the H2O2-mediated oxidation of ligands. To understand the mechanism, the Gibbs free energy profiles of the ground and excited states related to emission and quenching are computed by combining our approximation—called the energy shift method—and density functional theory. The different emission intensities are mainly attributed to different activation barriers for excitation energy transfer from the ligand-centered triplet (T1) to the Tb3+-centered excited state. Additionally, quenching from T1 to the ground state via intersystem crossing was inhibited by intramolecular hydrogen bonds only in the highly emissive Tb3+ complexes. © 2018 Wiley Periodicals, Inc.  相似文献   
66.
67.
The (3+1)-dimensional Dirac equation with position dependent mass in 4-vector electromagnetic fields is considered. Using two over-simplified examples (the Dirac-Coulomb and Dirac-oscillator fields), we report energy-levels crossing as a spectral property or as an effect of the hidden supersymmetric quantum mechanical language and/or quasi-parity signatures. Under different settings of the related interactions’ way-of-coupling into Dirac equation, it is observed that the two ultimate/effective descendents, Dirac-Coulomb and Dirac-oscillator, exhibit different conditions on the energy-levels crossings.  相似文献   
68.
The molar extinction coefficient, oscillator strength, natural fluorescence lifetime, and fluorescence quantum yield have been determined for 9,10-diiodoanthracene in ethanol at 20°C. The temperature effect on the quantum yield was studied in the range 120–300 K. The fluorescence lifetime was measured at 77 K. During glassification of ethanol, the fluorescence intensity of 9,10-diiodoanthracene increases by more than 50 times due to the activation nature of the intersystem crossing from the S1(1B2u+) state. The activation energy and pre-exponential factor for the probability of the intersystem {ie319-01}-crossing are found. The long-wavelength shift of the absorption spectrum with increasing bulk polarizability of the solvent is interpreted as evidence of changes in the nonspecific interactions. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 75, No. 3, pp. 304–308, May–June, 2008.  相似文献   
69.
The crossing number CR ( G ) of a graph G = ( V , E ) is the smallest number of edge crossings over all drawings of G in the plane. For any k 1 , the k planar crossing number of G , CR k ( G ) , is defined as the minimum of CR ( G 1 ) + CR ( G 2 ) + ? + CR ( G k ) over all graphs G 1 , G 2 , , G k with i = 1 k G i = G . Pach et al [Comput. Geom.: Theory Appl. 68 (2018), pp. 2–6] showed that for every k 1 , we have CR k ( G ) ( 2 / k 2 ? 1 / k 3 ) CR ( G ) and that this bound does not remain true if we replace the constant 2 / k 2 ? 1 / k 3 by any number smaller than 1 / k 2 . We improve the upper bound to ( 1 / k 2 ) ( 1 + o ( 1 ) ) as k . For the class of bipartite graphs, we show that the best constant is exactly 1 / k 2 for every k . The results extend to the rectilinear variant of the k ‐planar crossing number.  相似文献   
70.
A symmetrical host material, 2,7-di(9,9-dimethyl-9H-fluoren-1-yl)-9H-thioxanthen-9-one (DMBFTX), with TADF property was firstly developed. The red phosphorescent OLED based on this TADF host displays a lower EQEs rolloff of 38.8% at a luminance of 10 000 cd/m2 as compared to 71.2% of commercial mCP host, which is resulted from the upconversion of DMBFTX from triplet to singlet.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号