首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1069篇
  免费   124篇
  国内免费   42篇
化学   179篇
晶体学   4篇
力学   212篇
综合类   16篇
数学   327篇
物理学   497篇
  2024年   3篇
  2023年   11篇
  2022年   20篇
  2021年   29篇
  2020年   31篇
  2019年   27篇
  2018年   22篇
  2017年   36篇
  2016年   50篇
  2015年   35篇
  2014年   56篇
  2013年   97篇
  2012年   66篇
  2011年   62篇
  2010年   55篇
  2009年   71篇
  2008年   62篇
  2007年   52篇
  2006年   59篇
  2005年   40篇
  2004年   27篇
  2003年   35篇
  2002年   38篇
  2001年   41篇
  2000年   31篇
  1999年   27篇
  1998年   28篇
  1997年   21篇
  1996年   19篇
  1995年   19篇
  1994年   11篇
  1993年   8篇
  1992年   5篇
  1991年   8篇
  1990年   6篇
  1989年   6篇
  1988年   4篇
  1987年   1篇
  1986年   2篇
  1985年   6篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
  1974年   1篇
排序方式: 共有1235条查询结果,搜索用时 15 毫秒
991.
The classical third-order weighted essentially nonoscillatory (WENO) scheme is notoriously dissipative as it loses the optimal order of accuracy at critical points and its two-point finite difference in the smoothness indicators is unable to differentiate the critical point from the discontinuity. In recent years, modifications to the smoothness indicators and weights of the classical third-order WENO scheme have been reported to reduce numerical dissipation. This article presents a new reference smoothness indicator for constructing a low-dissipation third-order WENO scheme. The new reference smoothness indicator is a nonlinear combination of the local and global stencil smoothness indicators. The resulting WENO-Rp3 scheme with the power parameter p=1.5 achieves third-order accuracy in smooth regions including critical points and has low dissipation, but numerical results show this scheme cannot keep the ENO property near discontinuities. The recommended WENO-R3 scheme (p=1) keeps the ENO property and performs better than several recently developed third-order WENO schemes.  相似文献   
992.
A novel technique to determine the position of spacecraft orbits is proposed. The technique is based on the cross-correlation function of HF SAR images and is able to determine the relative position of orbits with an accuracy of ~ /4 or better, where is the wavelength of the HF radar pulse at its center frequency. The performance of the proposed technique was confirmed by simulation which was carried out under the condition of design facts of the SELENE LRS mission. The highly accurate orbit positioning ena...  相似文献   
993.
A multi‐resolution analysis (MRA) is proposed for efficient flow computation with preserving the high‐order numerical accuracy of a conventional solver. In the MRA process, the smoothness of a flow pattern is assessed by the difference between original flow property values, and the values approximated by high‐order interpolating polynomial in decomposition. Insignificant data in smooth region are discarded, and flux computation is performed only where crucial features of a solution exist. The reduction of expensive flow computation improves the overall computational efficiency. In order to maintain the high‐order accuracy, modified thresholding procedure restricts the additional error introduced by the thresholding below the order of accuracy of a conventional solver. The practical applicability of the MRA method is validated in various continuous and discontinuous flow problems. The MRA stably computes the Euler equations for continuous and discontinuous flow problems and maintains the accuracy of a conventional solver. Overall, it substantially enhances the computational efficiency of the conventional third‐order accurate solver. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
994.
995.
In this article, we present an improved third-order finite difference weighted essentially nonoscillatory (WENO) scheme to promote the order of convergence at critical points for the hyperbolic conservation laws. The improved WENO scheme is an extension of WENO-ZQ scheme. However, the global smoothness indicator has a little different from WENO-ZQ scheme. In this follow-up article, a convex combination of a second-degree polynomial with two linear polynomials in a traditional WENO fashion is used to compute the numerical flux at cell boundary. Although the same three-point information is adopted by the improved third-order WENO scheme, the truncation errors are smaller than some other third-order WENO schemes in L and L2 norms. Especially, the convergence order is not declined at critical points, where the first and second derivatives vanish but not the third derivative. At last, the behavior of improved scheme is proved on a variety of one- and two-dimensional standard numerical examples. Numerical results demonstrate that the proposed scheme gives better performance in comparison with other third-order WENO schemes.  相似文献   
996.
This work is devoted to the application of the super compact finite difference method (SCFDM) and the combined compact finite difference method (CCFDM) for spatial differencing of the spherical shallow water equations in terms of vorticity, divergence, and height. The fourth‐order compact, the sixth‐order and eighth‐order SCFDM, and the sixth‐order and eighth‐order CCFDM schemes are used for the spatial differencing. To advance the solution in time, a semi‐implicit Runge–Kutta method is used. In addition, to control the nonlinear instability, an eighth‐order compact spatial filter is employed. For the numerical solution of the elliptic equations in the problem, a direct hybrid method, which consists of a high‐order compact scheme for spatial differencing in the latitude coordinate and a fast Fourier transform in longitude coordinate, is utilized. The accuracy and convergence rate for all methods are verified against exact analytical solutions. Qualitative and quantitative assessments of the results for an unstable barotropic mid‐latitude zonal jet employed as an initial condition are addressed. It is revealed that the sixth‐order and eighth‐order CCFDMs and SCFDMs lead to a remarkable improvement of the solution over the fourth‐order compact method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
997.
Electron spins in magnetic materials have preferred orientations collectively and generate the macroscopic magnetization. Its dynamics spans over a wide range of timescales from femtosecond to picosecond, and then to nanosecond. The Landau-Lifshitz-Gilbert (LLG) equation has been widely used in micromagnetics simulations over decades. Recent theoretical and experimental advances have shown that the inertia of magnetization emerges at sub-picosecond timescales and contributes significantly to the ultrafast magnetization dynamics, which cannot be captured intrinsically by the LLG equation. Therefore, as a generalization, the inertial LLG (iLLG) equation is proposed to model the ultrafast magnetization dynamics. Mathematically, the LLG equation is a nonlinear system of parabolic type with (possible) degeneracy. However, the iLLG equation is a nonlinear system of mixed hyperbolic-parabolic type with degeneracy, and exhibits more complicated structures. It behaves as a hyperbolic system at sub-picosecond timescales, while behaves as a parabolic system at larger timescales spanning from picosecond to nanosecond. Such hybrid behaviors impose additional difficulties on designing efficient numerical methods for the iLLG equation. In this work, we propose a second-order semi-implicit scheme to solve the iLLG equation. The second-order temporal derivative of magnetization is approximated by the standard centered difference scheme, and the first-order temporal derivative is approximated by the midpoint scheme involving three time steps. The nonlinear terms are treated semi-implicitly using one-sided interpolation with second-order accuracy. At each time step, the unconditionallyunique solvability of the unsymmetric linear system is proved with detailed discussions on the condition number. Numerically, the second-order accuracy of the proposed method in both time and space is verified. At sub-picosecond timescales, the inertial effect of ferromagnetics is observed in micromagnetics simulations, in consistency with the hyperbolic property of the iLLG model; at nanosecond timescales, the results of the iLLG model are in nice agreements with those of the LLG model, in consistency with the parabolic feature of the iLLG model.  相似文献   
998.
The protein concentration is known to determine the stability against coalescence during formation of emulsions. Recently, it was observed that the protein concentration also influences the stability of formed emulsions against flocculation as a result of changes in the ionic strength. In both cases, the stability was postulated to be the result of a complete (i.e. saturated) coverage of the interface. By combining the current views on emulsion stability against coalescence and flocculation with new experimental data, an empiric model is established to predict emulsion stability based on protein molecular properties such as exposed hydrophobicity and charge. It was shown that besides protein concentration, the adsorbed layer (i.e. maximum adsorbed amount and interfacial area) dominates emulsion stability against coalescence and flocculation. Surprisingly, the emulsion stability was also affected by the adsorption rate. From these observations, it was concluded that a completely covered interface indeed ensures the stability of an emulsion against coalescence and flocculation. The contribution of adsorption rate and adsorbed amount on the stability of emulsions was combined in a surface coverage model. For this model, the adsorbed amount was predicted from the protein radius, surface charge and ionic strength. Moreover, the adsorption rate, which depends on the protein charge and exposed hydrophobicity, was approximated by the relative exposed hydrophobicity (QH). The model in the current state already showed good correspondence with the experimental data, and was furthermore shown to be applicable to describe data obtained from literature.  相似文献   
999.
提出了数值求解一维非定常对流扩散反应方程的一种高精度紧致隐式差分格式,其截断误差为O(τ~4+τ~2h~2+h~4),即格式整体具有四阶精度.差分方程在每一时间层上只用到了三个网格节点,所形成的代数方程组为三对角型,可采用追赶法进行求解,最后通过数值算例验证了格式的精确性和可靠性.  相似文献   
1000.
高精度边界格式的研究   总被引:1,自引:0,他引:1  
陈海昕  鄂秦  李凤蔚 《力学学报》1996,28(4):392-399
利用有精确解的Ringleb流动,构造了对流场数值解精度进行检验的“Ringleb机器”.重点讨论了边界格式对流场数值解的影响及高精度边界格式的建立.计算表明,在场内应用二阶精度格式情况下,采用二阶精度的边界格式所得到的流场解精度将大大高于采用一阶边界格式所得到的精度.为提高流场解的精度,不仅需要高精度的边界格式,还必须注意边界格式与场内格式的匹配.计算还表明,采用特征线修正的方法能有效地提高边界处理的精度  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号