首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1860篇
  免费   110篇
  国内免费   108篇
化学   599篇
晶体学   1篇
力学   131篇
综合类   23篇
数学   947篇
物理学   377篇
  2023年   11篇
  2022年   18篇
  2021年   20篇
  2020年   31篇
  2019年   47篇
  2018年   37篇
  2017年   51篇
  2016年   60篇
  2015年   45篇
  2014年   65篇
  2013年   146篇
  2012年   77篇
  2011年   89篇
  2010年   88篇
  2009年   115篇
  2008年   134篇
  2007年   120篇
  2006年   100篇
  2005年   93篇
  2004年   83篇
  2003年   104篇
  2002年   104篇
  2001年   67篇
  2000年   42篇
  1999年   44篇
  1998年   39篇
  1997年   35篇
  1996年   25篇
  1995年   23篇
  1994年   18篇
  1993年   18篇
  1992年   16篇
  1991年   14篇
  1990年   7篇
  1989年   15篇
  1988年   7篇
  1987年   7篇
  1986年   4篇
  1985年   9篇
  1984年   5篇
  1983年   3篇
  1982年   12篇
  1981年   4篇
  1980年   4篇
  1979年   7篇
  1978年   5篇
  1977年   2篇
  1972年   2篇
  1971年   2篇
  1959年   1篇
排序方式: 共有2078条查询结果,搜索用时 15 毫秒
41.
The selectivity of a column system, S, defined by equation 28, includes a variation coefficient (β) of plate number with capacity ratio which has a large influence on the peak capacity, as shown in Fig. 18. Some typical chromatograms are given. In order to predict S for a column system from Kovat's Index, equations 40 and 41 are given to calculate the constant of the carbon number rule for squalane at different temperatures or for different stationary phases. The specific retention value of heptane on squalane at different temperatures can be calculated from equation 42. The nonpolarity index, defined by equation 43, was used to calculate the retention value of heptane on various stationary phases. In liquid chromatography, the order of elution may be reversed by changing the composition of the eluent on the same chemically bonded silica (manufactured in China). The linear relations between the log retention values of different kinds of solutes or of a single solute on the silicas of different surface areas when using the same eluent are given.  相似文献   
42.
43.
In this work we address the optimization of mixed conductivity in fluorite compounds based on zirconia. Phase relations of the new systems YbO1.5-NbO2.5-ZrO2, and CaO-NbO2.5-ZrO2 are presented. The limit of the cubic defect fluorite phase in YbO1.5-NbO2.5-ZrO2 closely resembles that of the system YO1.5-NbO2.5-ZrO2, whilst in CaO-NbO2.5-ZrO2 is narrow extending to include composition Ca0.255Nb0.15Zr0.595O1.82 at 1500°C. The influence of dopant ion size, charge and composition on ionic conduction is assessed and parallels are drawn with the systems YO1.5-NbO2.5-ZrO2 and YO1.5-TiO2-ZrO2. Comparison of these results with published data on the Ti containing systems CaO-TiO2-ZrO2, GdO1.5-TiO2-ZrO2 shows that the highest mixed conducting compositions can only be offered in the system YO1.5-TiO2-ZrO2 out of all the systems here studied.  相似文献   
44.
The ternary system Li2O-Al2O3-B2O3 is reinvestigated with solid-state reaction and X-ray powder diffraction technique to clarify some long-standing uncertainties. The phase relations are constructed based on the phase identifications of 51 ternary samples. Six ternary compounds, Li2AlB5O10, LiAlB2O5, Li3AlB2O6, Li2AlBO4, LiAl7B4O17 and a compound with a composition close to 0.66Li2O·0.06Al2O3·0.28B2O3, are observed or confirmed in this system, and the thermal stability of these ternary compounds is also discussed on the basis of DTA experimental results.  相似文献   
45.
Thermal decomposition of 6 complexes of the type AH[Cr(NCS)4 (am)2]· nH2O is studied with derivatograph. The formation of Cr(NCS)3 as a labile intermediate is presumed. For some decomposition stages kinetic parameters are derived. The kinetic compensation effect is discussed.  相似文献   
46.
Using 1H- and 13C-NMR spectroscopies, cationic intermediates formed by activation of L2ZrCl2 with methylaluminoxane (MAO) in toluene were monitored at Al/Zr ratios from 50 to 1000 (L2 are various cyclopentadienyl (Cp), indenyl (Ind) and fluorenyl (Flu) ligands). The following catalysts were studied: (Cp-R)2ZrCl2 (R=Me, 1,2-Me2, 1,2,3-Me3, 1,2,4-Me3, Me4, Me5, n-Bu, t-Bu), rac-ethanediyl(Ind)2ZrCl2, rac-Me2Si(Ind)2ZrCl2, rac-Me2Si(1-Ind-2-Me)2ZrCl2, rac-ethanediyl(1-Ind-4,5,6,7-H4)2ZrCl2, (Ind-2-Me)2ZrCl2, Me2C(Cp)(Flu)ZrCl2, Me2C(Cp-3-Me)(Flu)ZrCl2 and Me2Si(Flu)2ZrCl2. Correlations between spectroscopic and ethene polymerization data for catalysts (Cp-R)2ZrCl2/MAO (R=H, Me, 1,2-Me2, 1,2,3-Me3, 1,2,4-Me3, Me4, Me5, n-Bu, t-Bu) and rac-Me2Si(Ind)2ZrCl2 were established. The catalysts (Cp-R)2ZrCl2/AlMe3/CPh3+B(C6F5)4 (R=Me, 1,2-Me2, 1,2,3-Me3, 1,2,4-Me3, Me4, n-Bu, t-Bu) were also studied for comparison of spectroscopic and polymerization data with MAO-based systems. Complexes of type (Cp-R)2ZrMe+←Me-Al≡MAO (IV) with different [Me-MAO] counteranions have been identified in the (Cp-R)2ZrCl2/MAO (R=n-Bu, t-Bu) systems at low Al/Zr ratios (50-200). At Al/Zr ratios of 500-1000, the complex [L2Zr(μ-Me)2AlMe2]+[Me-MAO] (III) dominates in all MAO-based reaction systems studied. Ethene polymerization activity strongly depends on the Al/Zr ratio (Al/Zr=200-1000) for the systems (Cp-R)2ZrCl2/MAO (R=H, Me, n-Bu, t-Bu), while it is virtually constant in the same range of Al/Zr ratios for the catalytic systems (Cp-R)2ZrCl2/MAO (R=1,2-Me2, 1,2,3-Me3, 1,2,4-Me3, Me4) and rac-Me2Si(Ind)2ZrCl2/MAO. The data obtained are interpreted on assumption that complex III is the main precursor of the active centers of polymerization in MAO-based systems.  相似文献   
47.
The subsolidus phase relations of R2O3-CaO-CuO ternary systems (R=Nd, Sm, Gd, Tm) have been investigated by X-ray powder diffraction. All samples were synthesized at about 950° in air. There exists a ternary compound Ca14−xRxCu24O41 (x = 4 for R=Nd, Gd and x = 5 for R = Sm) and a ternary solid solution Ca2+xR2−xCu5O10 (R=Nd, Sm, Gd, Tm) with a wide composition range Δx of about 0.6. The compound Ca14−xRxCu24O41 possesses a layered orthorhombic structure and is isostructural to Sr14−xCaxCu24O41. The lattice parameters a and c of the compound are basically independent of the ionic radius of R, while the lattice parameter b and unit-cell volume V decrease substantially with the decrease of the ionic radii of R. The Ca2+xR2−xCu5O10 solid solution is isostructural to Ca2+xY2−xCu5O10, the structure of which is based on an orthorhombic “NaCuO2-type” subcell containing infinite one-dimensional chains of edge-shared square planar cuprate groups crosslinked by the layered cations Ca and R that locate in the inter-chain tunnels.  相似文献   
48.
The subsolidus phase relations of the PrOx-CaO-CuO pseudo-ternary system sintered at 950-1000°C have been investigated by X-ray powder diffraction. In this system, there exist one compound Ca10Pr4Cu24O41, one Ca2Pr2Cu5O10-based solid solution, seven three-phase regions and two two-phase regions. The crystal structures of Ca10Pr4Cu24O41 and Ca2Pr2Cu5O10-based solid solution have been determined. Compound Ca10Pr4Cu24O41 crystallizes in an orthorhombic cell with space group D2h20Cccm, Z=4. Its lattice parameters are a=11.278(2) Å, b=12.448(3) Å and c=27.486(8) Å. The crystal structure of Ca2Pr2Cu5O10-based solid solution is an incommensurate phase based on the orthorhombic NaCuO2 type subcell. The lattice parameters of the subcell of the Ca2.4Pr1.6Cu5O10 are a0=2.8246(7) Å, b0=6.3693(5) Å, c0=10.679(1) Å, and those of the orthorhombic superstructure are with a=5a0, b=b0, c=5c0. The Ca2.4Pr1.6Cu5O10 structure can also be determined by using a monoclinic supercell with space group C2h5P21/c, Z=4, a=5a0, b=b0, and β=104.79(1)° or 136.60(1)°, V=5a0b0c0.  相似文献   
49.
Four many curves methods, viz. calculation techniques based on Eqs (30), (31), (34) and (36), respectively, for deriving kinetic parameters from several TG curves recorded with different heating rates are tested on two sets of theoretical TG curves. The maximum reaction rate temperature and conversion, as well as the approximate formulae used for their calculation are discussed. Some aspects of the kinetic compensation effect are analysed. The final conclusion is that the use of the many curves methods is not reasonable.  相似文献   
50.
A series of poly(o-hydroxy amide)s having both ether and ortho-catenated phenylene unit in the main chain were synthesized via the low-temperature solution polycondensation of 4,4-(1,2-phenylenedioxy)dibenzoyl chloride and 4,4-(4-tert-butyl-1,2-phenylenedioxy)dibenzoyl chloride with three bis(o-aminophenol)s including 4,4-diamino-3,3-dihydroxybiphenyl, 3,3-diamino-4,4-dihydroxybiphenyl, and 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane. The poly(o-hydroxy amide)s exhibited inherent viscosities in the range of 0.23-0.96 dl/g. Most of the poly(o-hydroxy amide)s were soluble in polar organic solvents such as N,N-dimethylacetamide (DMAc) and N-methyl-2-pyrrolidone (NMP) and could afford flexible and tough films by solution casting. Subsequent thermal cyclodehydration of the poly(o-hydroxy amide)s afforded polybenzoxazoles. However, the polybenzoxazoles were organic-insoluble except for those with the hexafluoroisopropylidene group. The polybenzoxazoles exhibited glass-transition temperatures (Tg) in the range of 200-232 °C by DSC and softening temperatures (Ts) of 250-256 °C by thermomechanical analysis. Thermogravimetric analyses indicated that most polybenzoxazoles were stable up to 500 °C in air or nitrogen. The 10% weight loss temperatures were recorded in the ranges of 546-606 °C in air and 574-631 °C in nitrogen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号