首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6142篇
  免费   813篇
  国内免费   1406篇
化学   3478篇
晶体学   133篇
力学   1825篇
综合类   82篇
数学   579篇
物理学   2264篇
  2024年   24篇
  2023年   80篇
  2022年   210篇
  2021年   190篇
  2020年   264篇
  2019年   216篇
  2018年   211篇
  2017年   284篇
  2016年   300篇
  2015年   232篇
  2014年   351篇
  2013年   552篇
  2012年   357篇
  2011年   433篇
  2010年   296篇
  2009年   352篇
  2008年   374篇
  2007年   402篇
  2006年   395篇
  2005年   408篇
  2004年   337篇
  2003年   299篇
  2002年   233篇
  2001年   242篇
  2000年   211篇
  1999年   175篇
  1998年   141篇
  1997年   141篇
  1996年   110篇
  1995年   98篇
  1994年   89篇
  1993年   78篇
  1992年   54篇
  1991年   50篇
  1990年   36篇
  1989年   25篇
  1988年   23篇
  1987年   17篇
  1986年   18篇
  1985年   11篇
  1984年   14篇
  1983年   4篇
  1982年   8篇
  1981年   3篇
  1980年   2篇
  1979年   5篇
  1978年   1篇
  1977年   2篇
  1971年   1篇
  1957年   2篇
排序方式: 共有8361条查询结果,搜索用时 31 毫秒
911.
数学均匀化方法是计算周期复合材料结构的有效方法之一,单胞边界条件施加的合理性直接决定了影响函数控制方程的计算效率和精度,进而影响均匀化弹性参数和摄动位移的计算精度.本文首先将单胞影响函数作为虚拟位移处理,给出了单胞在结构中真实的边界条件,结果表明,四边固支适合作为二维结构单胞边界条件;其次,针对二维结构提出了超单胞周期边界条件,有效提高了影响函数的计算精度,并使用与虚拟位移相对应的虚拟势能泛函验证超单胞周期边界条件的有效性;最后,利用数值分析验证多尺度渐进展开方法的计算精度,强调了二阶摄动的必要性.  相似文献   
912.
By using the advantages of carbon nanotubes (CNTs), such as their excellent mechanical properties and low density, CNT-reinforced metal matrix composites (MMCs) are expected to overcome the limitations of conventional metal materials, i.e., their high density and low ductility. To understand the behavior of composite materials, it is necessary to observe the behavior at the molecular level and to understand the effect of various factors, such as the radius and content of CNTs. Therefore, in this study, the effect of the CNT radius and content on the mechanical properties of CNT-Al composites was observed using a series of molecular dynamics simulations, particularly focusing on MMCs with a high CNT content and large CNT diameter. The mechanical properties, such as the strength and stiffness, were increased with an increasing CNT radius. As the CNT content increased, the strength and stiffness increased; however, the fracture strain was not affected. The behavior of double-walled carbon nanotubes (DWNTs) and single-walled carbon nanotubes (SWNTs) was compared through the decomposition of the stress–strain curve and observations of the atomic stress field. The fracture strain increased significantly for SWNT-Al as the tensile force was applied in the axial direction of the armchair CNTs. In the case of DWNTs, an early failure was initiated at the inner CNTs. In addition, the change in the elastic modulus according to the CNT content was predicted using the modified rule of mixture. This study is expected to be useful for the design and development of high-performance MMCs reinforced by CNTs.  相似文献   
913.
914.
Using a hot isostatic pressing (HIP) technique, we synthesized diamond/SiC composites from diamond and Si powders. At an HIP condition of 1450 °C and 100 MPa, a pressure much lower than that of the diamond stability field, diamond powders react with molten Si to form well-sintered diamond/SiC composites. Cubes of the composites with 15 mm edge length were thereby fabricated, and an application to the second stage anvils in a Kawai-type high-pressure apparatus was attempted. A hybrid anvils system using four cubes of the composites and four of the conventional WC was introduced and heating experiments up to 1600 °C became possible. Because the diamond/SiC composites are transparent to X-rays, the present system is applicable not only to diffraction studies but also to radiographic studies that need a larger window for an X-ray image.  相似文献   
915.
The implementation of a heating element to a composite gasket for high-temperature applications in the diamond-anvil cell was developed based on a double-gasket assemblage. The heating element is a thin platinum wall that covers the central borehole of the metal–ceramic–metal composite gasket and interconnects the two metal component parts of the gasket. Applying electric powers up to 35 W to the two gasket metal components result in ring-like heating around the sample inside the pressure chamber with temperatures exceeding ~2000 K in individual cases. The ring-like distribution of the maximum temperature located at the pressure-chamber wall facilitates a homogeneous temperature distribution at the sample position. As a consequence of the concentration of the heating power to the pressure chamber region, gradients of surface temperatures, both at the gasket and the diamond anvil, appear to be more pronounced compared with those known for classical external electrical heating. Apart from the tests of the mechanical stability on high-pressure operation in the diamond anvil cell at room temperature, the influence of the anvils in contact with the gasket on the characteristic power–temperature curves, temperature gradients and thermal equilibration resulting from changes in electrical power settings have been evaluated within the scope of a series of experimental investigations.  相似文献   
916.
《Composite Interfaces》2013,20(5):309-329
Chemically functionalized maleic anhydride (MAH)-grafted polypropylene matrix has been used (in place of polypropylene as matrix with compatibilizer) to process banana fiber/chemically functionalized polypropylene (BF/CFPP) composites, without using any compatibilizer and without any fiber modification by Palsule process. Fiber/matrix interfacial adhesion generated, in-situ, due to interactions between BF and the MAH of the CFPP matrix has been established by Fourier transform infrared spectroscopy and scanning electron microscopy. Mechanical properties of the BF/CFPP composites developed by Palsule process with in-situ fiber/matrix interfacial adhesion in this study have been found to be higher than those of the matrix and it increases with increasing amounts of fibers in composites, and are better than properties of literature reported BF/polypropylene composites processed with compatibilizers. Measured modulus of BF/CFPP composites compares well with values predicted by rule of mixtures, Hrisch model, Halpin-Tsai equations and its modified Nielsen version, and with Palsule equation. The feasibility of developing natural fiber/MAH grafted polyolefin composites by Palsule process without using any compatibilizer and without any fiber treatment is demonstrated.  相似文献   
917.
《Composite Interfaces》2013,20(8):749-770
The large wind turbines blades with multi-ton composite structures are mostly connected to the peach-bearings flanges using T-bolt joints which induce shear and bearing stress fields around the cross bolts. The significant differences between the modulus of elasticity of metallic bolts and composite surrounding materials cause stress concentration around interfaced zones and, also, limit the load capacity of the joints. In the present research, a pseudo functionally graded material (PFGM) as an interlayer is used around the cross bolts to examine the reduction of the stress concentration. Some radial variation of the mechanical properties would be considered for this interlayer. The finite element method is used to analyze the structures. Loadings are applied to the center of the cross bolts analogous to the real cases. Both the static and dynamic loadings are studied. For the finite element of the functionally graded material interlayer, a multilayer alternative material with constant properties in each layer is used. The results show that using an isotropic single layer with an average modulus of elasticity and specific thickness decreases the stress concentration of the composite part up to 47%. The various property models for the interlayer also show that an appropriated model can decrease the stress concentration up to 55%. Dynamic transient analyses would be implemented over the joint structure and improved considering to the practical cases. Using the PFGM interlayer decreases the constant and variable parts of the stresses up to 55% and also causes significant increasing of the joint fatigue life.  相似文献   
918.
《Composite Interfaces》2013,20(5):451-466
Sheath-core type bicomponent fibers of polypropylene (PP) as a sheath component and thermotropic liquid crystalline polymer (TLCP) as a core component were prepared by the highspeed melt spinning process. Continuous fiber reinforced thermoplastic composites, in which TLCP acts as a reinforcing fiber and PP as a matrix polymer, were fabricated by the compression molding of these fibers. In the melt spinning, the attainable highest take-up velocity of TLCP was improved by co-processing with PP. Tensile modulus and strength of the TLCP component in the PP/TLCP bicomponent fibers increased with an increase in the take-up velocity. Comparison of wide-angle X-ray diffraction patterns of starting bicomponent fibers and fabricated composites indicated that the orientation relaxation of TLCP did not occur in the compression molding process. Accordingly, the tensile modulus and strength of the PP/TLCP composites were similar to those of the bicomponent fibers. Continuous fiber reinforced thermoplastic composites with various types of fiber content distributions were fabricated from the bicomponent fibers in which sheath-core composition was changed gradually in the spinning process. In the three-point bending test, the composites with two different types of symmetric structural gradients, one with higher TLCP fiber content near the surfaces than in the center and the other with higher TLCP content in the center than near the surfaces, exhibited different flexural moduli even though the overall TLCP contents were comparable. In the three-point bending test of a composite with asymmetric structural gradient, the yielding behavior and maximum flexural load varied depending on the direction of load application although the initial flexural moduli were similar.  相似文献   
919.
《Composite Interfaces》2013,20(3):257-275
Viscous and elastomeric silicones have been applied as interlayers to carbon fibers in order to develop a tougher, micro-crack resistant, thermally stable polyimide (PMR-15) composite. Carbon fiber is continuously coated with very high molecular weight polydimethylsiloxane (PDMS) and polyvinyl-methylsiloxane (PVMS). Dynamic mechanical properties of the composites have been determined and compared with uncoated carbon fiber reinforced PMR-15 polyimide composites. The presence of the interlayer is shown by the appearance of a new relaxation peak. The peak temperature is found to be a good indication of the degree of the cure of the silicone elastomer. Comparison of the storage moduli of uncoated and coated carbon fiber composites at the service temperature range of the composites indicates that the presence of the silicone interlayer affects the shear moduli of the composites. Apparent activation energy of the α transition of the matrix in the modified composites varies with the amount of interlayer and composition in concert with the impact strength.  相似文献   
920.
《Composite Interfaces》2013,20(6):429-445
During a fiber pull-out test, it is desirable to analyze the stress profiles along the embedded fiber directly within the same time scale as the normal pull-out tests. In the present study, the axial tensile stress profiles of the fiber in a model composite are measured during the single-fiber pull-out tests by using stress birefringence of the fiber. It is concluded from the analysis of the measured stress profiles that an effective radius of matrix, i.e. a radius defining the region of the matrix where the major deformation takes place, is not constant but is an increasing function of the interfacial shear stress. By incorporating the variable values of the effective radius of matrix into the shear-lag model, the axial tensile and the interfacial shear stress profiles are calculated. To accurately estimate the interfacial shear strength, the stress distribution along the embedded fiber and the variability of the effective radius of matrix should be taken into account instead of calculating the interfacial shear strength simply from the pull-out stress and the embedded length.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号