首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   526篇
  免费   35篇
  国内免费   8篇
化学   49篇
晶体学   11篇
力学   117篇
数学   83篇
物理学   309篇
  2023年   1篇
  2022年   1篇
  2021年   6篇
  2020年   14篇
  2019年   6篇
  2018年   17篇
  2017年   2篇
  2016年   16篇
  2015年   14篇
  2014年   13篇
  2013年   63篇
  2012年   21篇
  2011年   30篇
  2010年   23篇
  2009年   39篇
  2008年   27篇
  2007年   23篇
  2006年   25篇
  2005年   15篇
  2004年   16篇
  2003年   12篇
  2002年   16篇
  2001年   17篇
  2000年   28篇
  1999年   19篇
  1998年   16篇
  1997年   15篇
  1996年   8篇
  1995年   8篇
  1994年   18篇
  1993年   13篇
  1992年   6篇
  1991年   4篇
  1990年   5篇
  1989年   1篇
  1988年   2篇
  1986年   3篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有569条查询结果,搜索用时 15 毫秒
11.
Data on mutual arrangements of different types of grain boundaries in polycrystals are presented. The heterogeneity in grain boundary distribution, namely, the effect of gathering low-angle or special tilt grain boundaries is found in pure aluminum thin films, in sheets of Fe-3% Si alloy and in Al2O3 doped with MgO or MgO and Y 2O3. The local texture, i.e., formation of colonies or clusters of close-oriented grains is considered as a reason of this heterogeneity. The influences of grain boundary gathering on the transport properties of polycrystals and on the crack propagation are discussed. A new concept of effective grain size is suggested to analyze the relationship between material microstructures and material properties.  相似文献   
12.
In a previous paper we studied the Young's and shear modulus of a high-angle twist grain boundary (5) in Cu, using the EAM, and related it to the uniaxial strain derivatives of single crystals. In this paper, we discuss elastic properties of ten additional twist grain boundaries, from 8.8–43.6°. The monolayer Young's modulus at each boundary was calculated and found to be 20–50% higher than the bulk value for all eleven boundaries for both csl and type1 structures. The monolayer shear modulus at each boundary was calculated and found to be 93–98% lower than the bulk value for six grain boundaries with csl structure and found to decrease with increasing twist angle. The critical shear stress was also calculated for eleven boundaries with csl structure and found to roughly decrease with increasing twist angle.  相似文献   
13.
Based on thermodynamic analysis of interfacial segregation, the segregation enthalpy H o of a solute I in a given matrix was found to depend linearly on two mutually independent terms reflecting the type of interface and the solid solubility limit X infI sup* at temperature T and can be written as In this equation, the structural dependence of interfacial segregation is contained in H *() which corresponds to the extrapolated segregation enthalpy of a solute with unlimited solubility in the matrix. The product [Tln(X infI sup* )] is essentially constant with temperature, and can therefore be obtained from data for maximum solid solubility, [Tln(X infI sup* )]max. The parameter v>0 represents the relationship between the activity a infI sup* of a solute at the bulk solid solubility limit in a given matrix and X infI sup* , a infI sup* =(X infI sup* ) v , and is characteristic for the matrix. Using recent experimental data for silicon, phosphorus, and carbon segregation at well-characterized grain boundaries in oriented bicrystals of -iron, the averaged value was determined. Values of H *() range from -8 kJ/mol (general grain boundaries) up to +8 kJ/mol (special grain boundaries). These values are discussed and used for a more precise and generalized construction of grain boundary segregation diagrams of -iron.  相似文献   
14.
Sr2TiSi2O8 single crystals were grown by Czochralski pulling and from a high-temperature solution. X-ray diffractometry revealed the modulated crystal structure of Sr2TiSi2O8 to belong to the 5D superspace group P4bm (−α, α, 1/2; α, α, 1/2) with α=0.3. Atomic positions, anisotropic displacement factors and positional modulation parameters for Sr2TiSi2O8 are determined and discussed. The positional modulation is further investigated by electron diffraction and high-resolution transmission electron microscopy. In the latter experiments, the 2D modulation appears to be superimposed by some 1D modulation waves. This effect is discussed in terms of growth conditions.  相似文献   
15.
A methodology to perform a ghost-cell-based immersed boundary method (GCIBM) is presented for simulating compressible turbulent flows around complex geometries. In this method, the boundary condition on the immersed boundary is enforced through the use of ‘ghost cells’ that are located inside the solid body. The computations of variables on these ghost cells are achieved using linear interpolation schemes. The validity and applicability of the proposed method is verified using a three-dimensional (3D) flow over a circular cylinder, and a large-eddy simulation of fully developed 3D turbulent flow in a channel with a wavy surface. The results agree well with the previous numerical and experimental results, given that the grid resolution is reasonably fine. To demonstrate the capability of the method for higher Mach numbers, supersonic turbulent flow over a circular cylinder is presented. While more work still needs to be done to demonstrate higher robustness and accuracy, the present work provides interesting insights using the GCIBM for the compressible flows.  相似文献   
16.
A methodology for classifying the hierarchy of martensite boundaries from the EBSD microtexture data of low-carbon steel is presented. Quaternion algebra has been used to calculate the ideal misorientation between product α variants for Kurdjumov–Sachs (KS) and its nearby orientation relationships, and arrive at the misorientation angle-axis set corresponding to packet (12 types), block (3 types) and sub-block boundaries. Analysis of proximity of experimental misorientation between data points from the theoretical misorientation set is found to be useful for identifying the different types of martensite boundaries. The optimal OR in the alloy system and the critical deviation threshold for identification of martensite boundaries could both be ascertained by invoking the ‘Enhancement Factor’ concept. The prior-γ grain boundaries, packet, block and sub-block boundaries could be identified reasonably well, and their average intercept lengths in a typical tempered martensite microstructure of 9Cr–1Mo–0.1C steel was estimated as 31 μm, 14 μm, 9 μm and 4 μm respectively.  相似文献   
17.
We present the combination of two complementary micro‐photoluminescence spectroscopic techniques operating in transient and steady state condition, respectively. Introducing the time domain into the well‐established micro‐photoluminescence mapping approach operating under steady state conditions demonstrates a distinct improvement of the robustness and reliability in the determination of charge carrier lifetime measured with micrometer spatial resolution. Lifetimes from 50 ns to above ms are accessible. We elaborate a calibration procedure and apply the combined all‐photoluminescence setup to high‐performance multicrystalline silicon. A lifetime image obtained from the established photoluminescence imaging technique is reconstructed from the microscopic map by considering lateral diffusion and optical blurring, revealing a more detrimental influence of small angle grain boundaries as well as a higher lifetime within grains as may be deduced from the standard imaging technique. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   
18.
G. Winther  C.S. Hong  X. Huang 《哲学杂志》2015,95(13):1471-1489
For the specific slip geometry of two sets of coplanar systems (a total of four systems) in fcc metals, the range of dislocation networks in boundaries aligned with one of the two active slip planes is predicted from the Frank equation for boundaries free of long-range elastic stresses. Detailed comparison with experimental data for eight dislocation boundaries in cold-rolled aluminium grains of the 45° ND rotated Cube orientation is conducted. It is concluded that the boundaries are Low-Energy Dislocation Structures, which are in good agreement with the Frank equation while also lowering the energy by dislocation reactions. Cross slip plays a role in the boundary formation process.  相似文献   
19.
Perovskite solar cells (PSCs) are a promising photovoltaic technology for stretchable applications because of their flexible, light‐weight, and low‐cost characteristics. However, the fragility of crystals and poor crystallinity of perovskite on stretchable substrates results in performance loss. In fact, grain boundary defects are the “Achilles’ heel” of optoelectronic and mechanical stability. We incorporate a self‐healing polyurethane (s‐PU) with dynamic oxime–carbamate bonds as a scaffold into the perovskite films, which simultaneously enhances crystallinity and passivates the grain boundary of the perovskite films. The stretchable PSCs with s‐PU deliver a stabilized efficiency of 19.15 % with negligible hysteresis, which is comparable to the performance on rigid substrates. The PSCs can maintain over 90 % of their initial efficiency after 3000 hours in air because of their self‐encapsulating structure. Importantly, the self‐healing function of the s‐PU scaffold was verified in situ. The s‐PU can release mechanical stress and repair cracks at the grain boundary on multiple levels. The devices recover 88 % of their original efficiency after 1000 cycles at 20 % stretch. We believe that this ingenious growth strategy for crystalline semiconductors will facilitate development of flexible and stretchable electronics.  相似文献   
20.
In this paper,large-sized sapphire (230×210 mm,27.5 kg) was grown by SAPMAC method (sapphire growth technique with micro-pulling and shoulder-expanding at the cooled center). Dislocation peculiarity in large sapphire boule (0001) basal plane was investigated by chemical etching,scanning electron microscopy and X-ray topography method. The triangular dislocation etch pit measured is 7.6×101~8.0×102 cm-2,in which relative high-density dislocations were generated at both initial and final stages of crystal growth. The analysis of single-crystal X-ray topography shows that there are no apparent sub-grain boundaries; the dislocation lines are isolated and straight. Finally,the origins of low-density dislocation in sapphire crystal are discussed by numerical analysis method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号