首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2270篇
  免费   167篇
  国内免费   214篇
化学   62篇
晶体学   1篇
力学   257篇
综合类   89篇
数学   1973篇
物理学   269篇
  2024年   3篇
  2023年   21篇
  2022年   22篇
  2021年   31篇
  2020年   37篇
  2019年   45篇
  2018年   44篇
  2017年   63篇
  2016年   60篇
  2015年   54篇
  2014年   109篇
  2013年   114篇
  2012年   85篇
  2011年   130篇
  2010年   119篇
  2009年   135篇
  2008年   166篇
  2007年   153篇
  2006年   151篇
  2005年   154篇
  2004年   98篇
  2003年   97篇
  2002年   100篇
  2001年   107篇
  2000年   80篇
  1999年   94篇
  1998年   57篇
  1997年   59篇
  1996年   51篇
  1995年   45篇
  1994年   35篇
  1993年   25篇
  1992年   18篇
  1991年   6篇
  1990年   15篇
  1989年   5篇
  1988年   9篇
  1987年   6篇
  1986年   7篇
  1985年   6篇
  1984年   9篇
  1983年   5篇
  1981年   2篇
  1980年   4篇
  1979年   3篇
  1977年   3篇
  1976年   2篇
  1973年   3篇
  1972年   1篇
  1971年   1篇
排序方式: 共有2651条查询结果,搜索用时 718 毫秒
51.
Taking place within more extensive work that focuses on hybrid methods in aeroacoustics, the present study is devoted to the data transfer operations that are to be performed between two stages of a hybrid calculation. More precisely, the article focuses on two typical operations that usually accompany such data transfer, which are (i) the sampling rate reduction and (ii) the interpolation of the unsteady perturbations to be transmitted from one stage to the other. First part of the paper analyzes the two main issues of such operations, which are the spuriousing and the aliasing phenomena. For doing so, the usual notions of the interpolation theory are revisited before they are synthesized within an original approach. The here proposed formalism allows to understand better both the spuriousing and the aliasing phenomena, as well as to accurately predict the impact of the latter on the data to be transmitted in terms of signal degradation. Second part of the paper provides an illustration and a validation of these theoretical developments via a direct application to a typical aerodynamic noise problem (aeroacoustic emission by a 2D cylinder cross flow). There, it is further shown how the here proposed formalism can help in improving aeroacoustics hybrid calculations by predicting (and thus possibly minimizing) the bias to be induced on the acoustic extrapolation stage because of the aliasing and/or spuriousing effects inherited from the sampling rate reduction and/or interpolation of CFD data—which is likely to occur in any hybrid scenario. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
52.
53.
This work honors the 75th birthday of Professor Ionel Michael Navon by presenting original results highlighting the computational efficiency of the adjoint sensitivity analysis methodology for function‐valued operator responses by means of an illustrative paradigm dissolver model. The dissolver model analyzed in this work has been selected because of its applicability to material separations and its potential role in diversion activities associated with proliferation and international safeguards. This dissolver model comprises eight active compartments in which the 16 time‐dependent nonlinear differential equations modeling the physical and chemical processes comprise 619 scalar and time‐dependent model parameters, related to the model's equation of state and inflow conditions. The most important response for the dissolver model is the time‐dependent nitric acid in the compartment furthest away from the inlet, where measurements are available at 307 time instances over the transient's duration of 10.5 h. The sensitivities to all model parameters of the acid concentrations at each of these instances in time are computed efficiently by applying the adjoint sensitivity analysis methodology for operator‐valued responses. The uncertainties in the model parameters are propagated using the above‐mentioned sensitivities to compute the uncertainties in the computed responses. A predictive modeling formalism is subsequently used to combine the computational results with the experimental information measured in the compartment furthest from the inlet and then predict optimal values and uncertainties throughout the dissolver. This predictive modeling methodology uses the maximum entropy principle to construct an optimal approximation of the unknown a priori distribution for the a priori known mean values and uncertainties characterizing the model parameters and the computed and experimentally measured model responses. This approximate a priori distribution is subsequently combined using Bayes' theorem with the “likelihood” provided by the multi‐physics computational models. Finally, the posterior distribution is evaluated using the saddle‐point method to obtain analytical expressions for the optimally predicted values for the parameters and responses of both multi‐physics models, along with corresponding reduced uncertainties. This work shows that even though the experimental data pertains solely to the compartment furthest from the inlet (where the data were measured), the predictive modeling procedure used herein actually improves the predictions and reduces the predicted uncertainties for the entire dissolver, including the compartment furthest from the measurements, because this predictive modeling methodology combines and transmits information simultaneously over the entire phase‐space, comprising all time steps and spatial locations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
54.
In this work crack formation and development is addressed and implemented in a planar layered reinforced-concrete beam element. The crack initiation and growth is described using the strength criterion in conjunction with exact kinematics of the interlayer connection. In this way a novel embedded-discontinuity beam finite element is derived in which the tensile stresses in concrete at the crack position reaching the tensile strength will trigger a crack to open. Since the element is multi-layered, in this way the crack is allowed to propagate through the depth of the beam. The cracked layer(s) will involve discontinuity in the cross-sectional rotation equal to the crack-profile angle, as well as a discontinuity in the position vector of the layer’s reference line. A bond–slip relationship is superimposed onto this model in a kinematically consistent manner with reinforcement being treated as an additional layer of zero thickness with its own material parameters and a constitutive law implemented in the multi-layered beam element.  相似文献   
55.
The immersed boundary‐lattice Boltzmann method has been verified to be an effective tool for fluid‐structure interaction simulation associated with thin and flexible bodies. The newly developed smoothed point interpolation method (S‐PIM) can handle the largely deformable solids owing to its softened model stiffness and insensitivity to mesh distortion. In this work, a novel coupled method has been proposed by combining the immersed boundary‐lattice Boltzmann method with the S‐PIM for fluid‐structure interaction problems with large‐displacement solids. The proposed method preserves the simplicity of the lattice Boltzmann method for fluid solvers, utilizes the S‐PIM to establish the realistic constitutive laws for nonlinear solids, and avoids mesh regeneration based on the frame of the immersed boundary method. Both two‐ and three‐dimensional numerical examples have been carried out to validate the accuracy, convergence, and stability of the proposed method in consideration of comparative results with referenced solutions.  相似文献   
56.
Ming-En Tian 《中国物理 B》2021,30(5):58503-058503
A single-stage ring resonator capable of introducing six modes within the ultra-wideband (UWB) passband is presented. The sextuple-mode resonator consists of three rings and three sets of stepped-impedance open stubs. Based on this sextuple-mode resonator, a UWB filter fed by the interdigital-coupling line (ICL) is designed. And we propose a two-round interpolation method to obtain the filter's initial dimensions. The designed filter is fabricated on a double-sided YBCO/MgO/YBCO high-temperature superconducting (HTS) thin film for demonstration. The experimental results show that this UWB filter produces eight resonances in the passband eventually, which effectively improves the in-band reflection and the band-edge steepness. Moreover, the upper stopband performance is enhanced due to the transmission zeros (TZs) generated by the stepped-impedance open stubs and the ICL structure. The measured good performance verifies the practicability of the two-round interpolation approach, which can also be extended to other odd-even-mode filter designs.  相似文献   
57.
An immersed smoothed point interpolation method using 3‐node triangular background cells is proposed to solve 2D fluid‐structure interaction problems for solids with large deformation/displacement placed in incompressible viscous fluid. In the framework of immersed‐type method, the governing equations can be decomposed into 3 parts on the basis of the fictitious fluid assumption. The incompressible Navier‐Stokes equations are solved using the semi‐implicit characteristic‐based split scheme, and solids are simulated using the newly developed edge‐based smoothed point interpolation method. The fictitious fluid domain can be used to calculate the coupling force. The numerical results show that immersed smoothed point interpolation method can avoid remeshing for moving solid based on immersed operation and simulate the contact phenomenon without an additional treatment between the solid and the fluid boundary. The influence from information transfer between solid domain and fluid domain on fluid‐structure interaction problems has been investigated. The numerical results show that the proposed interpolation schemes will generally improve the accuracy for simulating both fluid flows and solid structures.  相似文献   
58.
An empirical investigation is made of AMG solver performance for the fully coupled set of Navier–Stokes equations. The investigation focuses on two different FV discretizations for the standard driven cavity test problem. One is a collocated vertex‐based discretization; the other is a cell‐centred staggered‐grid discretization. Both employ otherwise identical orthogonal Cartesian meshes. It is found that if mixed‐order interpolation is used in the construction of the Galerkin coarse‐grid approximation (CGA), a close‐to‐optimum mesh‐independent scaling of the AMG convergence is observed with similar convergence rates for both discretizations. If, on the other hand, an equal‐order interpolation is used, convergence rates are mesh‐dependent but the scaling differs in each case. For the collocated‐grid case, it depends both on the mesh size, h (or bandwidth Qh?1) and on the total number of grids, G, whereas for the staggered‐grid case it depends only on Q. Comparing the two characteristics reveals that the Q‐dependent parts are very similar; it is only in the G‐dependent convergence for the collocated‐grid case that they differ. This takes the form of stepped reductions in the AMG convergence rate (implying step reductions in the quality of the Galerkin CGA that correlate exactly with step increases in G). These findings reinforce previous evidence that, for optimum mesh‐independent performance, mixed‐order interpolations should be used in forming Galerkin CGAs for coupled Navier–Stokes problems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
59.
对3类由凹函数生成的弱Orlicz鞅空间建立了相应的弱原子分解.作为应用,首先给出了这些弱Orlicz鞅空间上次线性算子有界的一个充分条件,并在此基础上证明了一些弱型鞅不等式,然后证明了关于这些弱Orlicz鞅空间的Marcinkiewicz型插值定理.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号