首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31018篇
  免费   3742篇
  国内免费   1819篇
化学   1809篇
晶体学   16篇
力学   3536篇
综合类   359篇
数学   21727篇
物理学   9132篇
  2024年   63篇
  2023年   304篇
  2022年   388篇
  2021年   517篇
  2020年   946篇
  2019年   905篇
  2018年   854篇
  2017年   812篇
  2016年   903篇
  2015年   748篇
  2014年   1376篇
  2013年   2805篇
  2012年   1481篇
  2011年   1804篇
  2010年   1745篇
  2009年   1901篇
  2008年   1998篇
  2007年   1954篇
  2006年   1681篇
  2005年   1703篇
  2004年   1395篇
  2003年   1365篇
  2002年   1186篇
  2001年   950篇
  2000年   925篇
  1999年   841篇
  1998年   798篇
  1997年   652篇
  1996年   501篇
  1995年   432篇
  1994年   368篇
  1993年   244篇
  1992年   239篇
  1991年   247篇
  1990年   209篇
  1989年   128篇
  1988年   125篇
  1987年   119篇
  1986年   119篇
  1985年   134篇
  1984年   119篇
  1983年   58篇
  1982年   100篇
  1981年   88篇
  1980年   63篇
  1979年   68篇
  1978年   47篇
  1977年   46篇
  1976年   33篇
  1973年   20篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
11.
A new method for the solution of the damped Burgers' equation is described. The marker method relies on the definition of a convective field associated with the underlying partial differential equation; the information about the approximate solution is associated with the response of an ensemble of markers to this convective field. Some key aspects of the method, such as the selection of the shape function and the initial loading, are discussed in some details. The marker method is applicable to a general class of nonlinear dispersive partial differential equations. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   
12.
This paper studies the application of the continuous sensitivity equation method (CSEM) for the Navier–Stokes equations in the particular case of shape parameters. Boundary conditions for shape parameters involve flow derivatives at the boundary. Thus, accurate flow gradients are critical to the success of the CSEM. A new approach is presented to extract accurate flow derivatives at the boundary. High order Taylor series expansions are used on layered patches in conjunction with a constrained least‐squares procedure to evaluate accurate first and second derivatives of the flow variables at the boundary, required for Dirichlet and Neumann sensitivity boundary conditions. The flow and sensitivity fields are solved using an adaptive finite‐element method. The proposed methodology is first verified on a problem with a closed form solution obtained by the Method of Manufactured Solutions. The ability of the proposed method to provide accurate sensitivity fields for realistic problems is then demonstrated. The flow and sensitivity fields for a NACA 0012 airfoil are used for fast evaluation of the nearby flow over an airfoil of different thickness (NACA 0015). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
13.
A particle imaging technique has been used to collect droplet displacement statistics in a round turbulent jet of air. Droplets are injected on the jet axis, and a laser sheet and position-sensitive photomultiplier tube are used to track their radial displacement and time-of-flight. Dispersion statistics can be computed which are Lagrangian or Eulerian in nature. The experiments have been simulated numerically using a second-order closure scheme for the jet and a stochastic simulation for the particle trajectories. Results are presented for non-vaporizing droplets of sizes from 35 to 160 μm. The simulations have underscored the importance of initial conditions and early droplet displacement history on the droplet trajectory for droplets with large inertia relative to the turbulence. Estimates of initial conditions have been made and their effect on dispersion is quantified.  相似文献   
14.
本文通过模拟研究,讨论了最大似然方法和Bayes方法在分析结构方程模型中的相似点和不同之处。  相似文献   
15.
16.
17.
The paper outlines a procedure to identify the space-and time-dependent external nonstationary load acting on a closed circular cylindrical shell of medium thickness. Time-dependent deflections at several points of the shell are used as input data to solve the inverse problem. Examples of numerical identification of various nonstationary loads, including moving ones are presented. The relationship between the external load and the stress-strain state of the shell is described by the Volterra equation of the first kind. The identification problem is solved using Tikhonov's regularization method and Apartsin's h-regularization method __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 7, pp. 91–100, July 2008.  相似文献   
18.
This paper presents an operator‐splitting method (OSM) for the solution of the universal Reynolds equation. Jakobsson–Floberg–Olsson (JFO) pressure conditions are used to study cavitation in liquid‐lubricated journal bearings. The shear flow component of the oil film is first solved by a modified upwind finite difference method. The solution of the pressure gradient flow component is computed by the Galerkin finite element method. Present OSM solutions for slider bearings are in good agreement with available analytical and experimental results. OSM is then applied to herringbone grooved journal bearings. The film pressure, cavitation areas, load capacity and attitude angle are obtained with JFO pressure conditions. The calculated load capacities are in agreement with available experimental data. However, a detailed comparison of the present results with those predicted using Reynolds pressure conditions shows some differences. The numerical results showed that the load capacity and the critical mass of the journal (linear stability indicator) are higher and the attitude angle is lower than those predicted by Reynolds pressure conditions for cases of high eccentricities. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
19.
A new numerical method called linearized and rational approximation method is presented to solve non‐linear evolution equations. The utility of the method is demonstrated for the case of differentiation of functions involving steep gradients. The solution of Burgers' equation is presented to illustrate the effectiveness of the technique for the solution of non‐linear evolution equations exhibiting nearly discontinuous solutions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
20.
This paper attempts to reproduce numerically previous experimental findings with opposed flows and extends their range to quantify the effects of upstream pipes and nozzles with inviscid, laminar and turbulent flows. The choice of conservation equations, boundary conditions, algorithms for their solution, the degree of grid dependence, numerical diffusion and the validity of numerical approximations are justified with supporting calculations where necessary. The results of all calculations on the stagnation plane show maximum strain rates close to the annular exit from the nozzles and pipes for lower separations and it can be expected that corresponding reacting flows will tend to extinguish in this region with the extinction moving towards the axis. With laminar flows, the maximum strain rate increased with Reynolds number and the maximum values were generally greater than with inviscid flows and smaller than with turbulent flows. With large separations, the strain rates varied less and this explains some results with reacting flows where the extinction appeared to begin on the axis. The turbulent‐flow calculations allowed comparison of three common variants of a two‐equation first‐moment closure. They provided reasonable and useful indications of strain rates but none correctly represented the rms of velocity fluctuations on the axis and close to the stagnation plane. As expected, those designed to deal with this problem produced results in better agreement with experiment but were still imperfect. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号