首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2213篇
  免费   183篇
  国内免费   236篇
化学   98篇
晶体学   2篇
力学   138篇
综合类   56篇
数学   1908篇
物理学   430篇
  2024年   4篇
  2023年   24篇
  2022年   24篇
  2021年   33篇
  2020年   28篇
  2019年   40篇
  2018年   43篇
  2017年   51篇
  2016年   44篇
  2015年   39篇
  2014年   73篇
  2013年   179篇
  2012年   73篇
  2011年   95篇
  2010年   105篇
  2009年   128篇
  2008年   132篇
  2007年   154篇
  2006年   155篇
  2005年   153篇
  2004年   102篇
  2003年   140篇
  2002年   129篇
  2001年   119篇
  2000年   101篇
  1999年   96篇
  1998年   97篇
  1997年   80篇
  1996年   40篇
  1995年   36篇
  1994年   19篇
  1993年   10篇
  1992年   6篇
  1991年   14篇
  1990年   8篇
  1989年   7篇
  1988年   7篇
  1987年   4篇
  1986年   3篇
  1985年   6篇
  1984年   5篇
  1983年   2篇
  1982年   3篇
  1981年   4篇
  1980年   2篇
  1979年   3篇
  1978年   5篇
  1977年   5篇
  1973年   1篇
  1957年   1篇
排序方式: 共有2632条查询结果,搜索用时 15 毫秒
71.
The nonlinear, nonnegative single‐mixture blind source separation problem consists of decomposing observed nonlinearly mixed multicomponent signal into nonnegative dependent component (source) signals. The problem is difficult and is a special case of the underdetermined blind source separation problem. However, it is practically relevant for the contemporary metabolic profiling of biological samples when only one sample is available for acquiring mass spectra; afterwards, the pure components are extracted. Herein, we present a method for the blind separation of nonnegative dependent sources from a single, nonlinear mixture. First, an explicit feature map is used to map a single mixture into a pseudo multi‐mixture. Second, an empirical kernel map is used for implicit mapping of a pseudo multi‐mixture into a high‐dimensional reproducible kernel Hilbert space. Under sparse probabilistic conditions that were previously imposed on sources, the single‐mixture nonlinear problem is converted into an equivalent linear, multiple‐mixture problem that consists of the original sources and their higher‐order monomials. These monomials are suppressed by robust principal component analysis and hard, soft, and trimmed thresholding. Sparseness‐constrained nonnegative matrix factorizations in reproducible kernel Hilbert space yield sets of separated components. Afterwards, separated components are annotated with the pure components from the library using the maximal correlation criterion. The proposed method is depicted with a numerical example that is related to the extraction of eight dependent components from one nonlinear mixture. The method is further demonstrated on three nonlinear chemical reactions of peptide synthesis in which 25, 19, and 28 dependent analytes are extracted from one nonlinear mixture mass spectra. The goal application of the proposed method is, in combination with other separation techniques, mass spectrometry‐based non‐targeted metabolic profiling, such as biomarker identification studies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
72.
王钥  张庆彩 《数学杂志》2015,35(3):477-485
本文研究了一类复微分方程组的代数解的存在问题.利用最大模原理和Nevanlinna值分布理论,得到了一个结论,推广和改进了一些文献的结果,例子表明结论精确.  相似文献   
73.
We present a comparison of different multigrid approaches for the solution of systems arising from high‐order continuous finite element discretizations of elliptic partial differential equations on complex geometries. We consider the pointwise Jacobi, the Chebyshev‐accelerated Jacobi, and the symmetric successive over‐relaxation smoothers, as well as elementwise block Jacobi smoothing. Three approaches for the multigrid hierarchy are compared: (1) high‐order h‐multigrid, which uses high‐order interpolation and restriction between geometrically coarsened meshes; (2) p‐multigrid, in which the polynomial order is reduced while the mesh remains unchanged, and the interpolation and restriction incorporate the different‐order basis functions; and (3) a first‐order approximation multigrid preconditioner constructed using the nodes of the high‐order discretization. This latter approach is often combined with algebraic multigrid for the low‐order operator and is attractive for high‐order discretizations on unstructured meshes, where geometric coarsening is difficult. Based on a simple performance model, we compare the computational cost of the different approaches. Using scalar test problems in two and three dimensions with constant and varying coefficients, we compare the performance of the different multigrid approaches for polynomial orders up to 16. Overall, both h‐multigrid and p‐multigrid work well; the first‐order approximation is less efficient. For constant coefficients, all smoothers work well. For variable coefficients, Chebyshev and symmetric successive over‐relaxation smoothing outperform Jacobi smoothing. While all of the tested methods converge in a mesh‐independent number of iterations, none of them behaves completely independent of the polynomial order. When multigrid is used as a preconditioner in a Krylov method, the iteration number decreases significantly compared with using multigrid as a solver. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
74.
A two‐grid convergence analysis based on the paper [Algebraic analysis of aggregation‐based multigrid, by A. Napov and Y. Notay, Numer. Lin. Alg. Appl. 18 (2011), pp. 539–564] is derived for various aggregation schemes applied to a finite element discretization of a rotated anisotropic diffusion equation. As expected, it is shown that the best aggregation scheme is one in which aggregates are aligned with the anisotropy. In practice, however, this is not what automatic aggregation procedures do. We suggest approaches for determining appropriate aggregates based on eigenvectors associated with small eigenvalues of a block splitting matrix or based on minimizing a quantity related to the spectral radius of the iteration matrix. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
75.
We prove quadratic upper bounds on the order of any autotopism of a quasigroup or Latin square, and hence also on the order of any automorphism of a Steiner triple system or 1‐factorization of a complete graph. A corollary is that a permutation σ chosen uniformly at random from the symmetric group will almost surely not be an automorphism of a Steiner triple system of order n, a quasigroup of order n or a 1‐factorization of the complete graph . Nor will σ be one component of an autotopism for any Latin square of order n. For groups of order n it is known that automorphisms must have order less than n, but we show that quasigroups of order n can have automorphisms of order greater than n. The smallest such quasigroup has order 7034. We also show that quasigroups of prime order can possess autotopisms that consist of three permutations with different cycle structures. Our results answer three questions originally posed by D.  Stones.  相似文献   
76.
A 1‐factorization of a graph G is a decomposition of G into edge‐disjoint 1‐factors (perfect matchings), and a perfect 1‐factorization is a 1‐factorization in which the union of any two of the 1‐factors is a Hamilton cycle. We consider the problem of the existence of perfect 1‐factorizations of even order 4‐regular Cayley graphs, with a particular interest in circulant graphs. In this paper, we study a new family of graphs, denoted , which are Cayley graphs if and only if k is even or . By solving the perfect 1‐factorization problem for a large class of graphs, we obtain a new class of 4‐regular bipartite circulant graphs that do not have a perfect 1‐factorization, answering a problem posed in 7 . With further study of graphs, we prove the nonexistence of P1Fs in a class of 4‐regular non‐bipartite circulant graphs, which is further support for a conjecture made in 7 .  相似文献   
77.
A 3‐phase Barker array is a matrix of third roots of unity for which all out‐of‐phase aperiodic autocorrelations have magnitude 0 or 1. The only known truly two‐dimensional 3‐phase Barker arrays have size 2 × 2 or 3 × 3. We use a mixture of combinatorial arguments and algebraic number theory to establish severe restrictions on the size of a 3‐phase Barker array when at least one of its dimensions is divisible by 3. In particular, there exists a double‐exponentially growing arithmetic function T such that no 3‐phase Barker array of size with exists for all . For example, , , and . When both dimensions are divisible by 3, the existence problem is settled completely: if a 3‐phase Barker array of size exists, then .  相似文献   
78.
LU和Cholesky分解的向前舍入误差分析   总被引:2,自引:1,他引:1  
1引言LU分解可用于解可逆线性系统Ax=b.作为数值代数领域中的重要工具,其舍入误差分析一直为众多学者所关注.事实上,长方矩阵的LU分解也有着广泛的应用,如,确定矩阵数值秩的LU分解(RRLU)[5,7],解等式约束最小二乘问题的直接消去法[3]等问题中都涉及到长方矩阵的LU分解.当A∈Rm×n且秩r≤min{m,n},则在考虑A的LU分解时[4],一般需要确定置换阵∏L,∏R使得A(1):=∏L-A∏R的LU分解能持续qr步,这里当A为亏秩矩阵时,qr=r;否贝qr=r-1.在.A(1)的LU分解的第k(k≤qr)步,需执行如下Gauss消去过程:  相似文献   
79.
In this paper, we summarize the existing methods of solving the evolution equation of the leading-twist \begin{document}$B$\end{document}-meson LCDA. Then, in the Mellin space, we derive a factorization formula with next-to-leading-logarithmic (NLL) resummation for the form factors \begin{document}$F_{A,V}$\end{document} in the \begin{document}$B \to \gamma \ell\nu$\end{document} decay at leading power in \begin{document}$\Lambda/m_b$\end{document}. Furthermore, we investigate the power suppressed local contributions, factorizable non-local contributions (which are suppressed by \begin{document}$1/E_\gamma$\end{document} and \begin{document}$1/m_b$\end{document}), and soft contributions to the form factors. In the numerical analysis, which employs the two-loop-level hard function and the jet function, we find that both the resummation effect and the power corrections can sizably decrease the form factors. Finally, the integrated branching ratios are also calculated for comparison with future experimental data.  相似文献   
80.
采用量子统计系综理论,研究了基态NO分子宏观气体摩尔熵、摩尔内能、摩尔热容等热力学性质.首先应用课题组前期建立的变分代数法(variational algebraic method, VAM)计算获得了基态NO分子的完全振动能级,得到的VAM振动能级作为振动部分,结合欧拉-麦克劳林渐进展开公式的转动贡献,应用于经典的热力学与统计物理公式中,从而计算得到了1000-5000 K温度范围内NO宏观气体的摩尔内能、摩尔熵和摩尔热容.将不同方法计算得到的摩尔热容结果分别与实验值进行比较,结果表明基于VAM完全振动能级获得的结果优于其他方法获得的理论结果.振动部分采用谐振子模型对无限能级求和计算热力学性质的方法有一定的局限性,应当使用有限的完全振动能级进行统计求和.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号