首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11680篇
  免费   1106篇
  国内免费   850篇
化学   8053篇
晶体学   485篇
力学   104篇
综合类   74篇
数学   2421篇
物理学   2499篇
  2023年   72篇
  2022年   125篇
  2021年   133篇
  2020年   177篇
  2019年   259篇
  2018年   210篇
  2017年   239篇
  2016年   261篇
  2015年   449篇
  2014年   486篇
  2013年   1042篇
  2012年   835篇
  2011年   935篇
  2010年   874篇
  2009年   1003篇
  2008年   900篇
  2007年   805篇
  2006年   666篇
  2005年   510篇
  2004年   495篇
  2003年   449篇
  2002年   490篇
  2001年   290篇
  2000年   268篇
  1999年   245篇
  1998年   200篇
  1997年   161篇
  1996年   150篇
  1995年   112篇
  1994年   107篇
  1993年   79篇
  1992年   64篇
  1991年   46篇
  1990年   25篇
  1989年   17篇
  1988年   16篇
  1985年   41篇
  1984年   20篇
  1983年   24篇
  1982年   25篇
  1981年   48篇
  1980年   32篇
  1979年   17篇
  1978年   26篇
  1977年   33篇
  1976年   28篇
  1975年   25篇
  1974年   28篇
  1973年   25篇
  1971年   17篇
排序方式: 共有10000条查询结果,搜索用时 531 毫秒
991.
The first example of a heteropolyoxomolybdate containing palladium(IV) was isolated and characterized by X‐ray crystallography. The palladium(IV) hexamolybdate, K0.75Na3.75[PdMo6O24H3.5]·17H2O, was isolated from an aqueous solution at pH 4.5 in the space group P\bar{1} , a 10.790(2), b 12.244(3), c 14.086(3) Å, α 113.77(1), β 90.41(1),γ 107.86(1)°, and the structure was determined using X‐ray diffraction methods, refining to a residual of 0.0301 for 5334 reflections. A formal “[PdMo6O24H3]5–” subunit exhibits the basic Anderson structure, with two [PdMo6O24H3]5– cluster anions in the structure bridged by a hydrogen atom (formally an H+) situated on a center of symmetry to give a “[Pd2Mo12O48H7]9–” dimeric anion. The palladium(IV) atom occupies a slightly distorted octahedral environment, with Pd–O distances ranging from 1.968 to 2.009 Å.  相似文献   
992.
A novel metal‐organic framework, [Zn(C10H8O5)]n ( 1 ) (C10H8O5 = 2‐(4‐carboxylatophenoxy)propionate), was synthesized and characterized by elemental analysis, IR spectroscopy, X‐ray crystallography and thermogravimetric analysis. The crystal structure study reveals that each zinc atom is coordinated by four oxygen atoms from four different ligands to obtain a distorted tetrahedron. The rigid carboxyl group bridges two adjacent zinc atoms to form a dimer of eight‐membered rings, whereas the flexible carboxyl group bridges two adjacent dimers to form 1D chains along the a axis. Two adjacent 1D chains are interconnected by the ligands to produce 2D layers. These layers are further stabilized by intermolecular hydrogen bonds to construct a 3D framework showing high thermal stability (445 °C).  相似文献   
993.
New ternary rare earth metal boride carbides with compositions close to RE10B9C10 (RE = Gd, Tb) were prepared from the elements by melting around 1800 K followed by annealing in silica tubes at 1270 K for one month. The crystal structure of the terbium compound was solved by single‐crystal X‐ray diffraction. It crystallizes in a new structure type in the monoclinic space group P21/c, a = 7.937(1), b = 23.786(2), c = 11.172(1) Å, β = 133.74(1)°, Z = 4, R1 = 0.045 (wR2 = 0.11) for 5713 reflections with Io > 2σ(Io). In the structure BC2 units and single carbon atoms are attached to a zigzag boron chain forming the unprecedented B18C18 branching unit with a B–B distance of 2.42(2) Å between these units. In addition isolated carbon atoms occupy the centres of elongated octahedra formed by rare earth metal atoms. Disorder in the terbium position together with anomalous displacement ellipsoids for carbon atoms except of those in the BC2 fragments can be rationalized in terms of a slight deviation in stoichiometry, Tb10B9+xC10–x (x ≈? 0.2). The terbium compound is ferromagnetic below TC ≈? 45 K. Due to the presence of moderately narrow domain walls the magneto‐crystalline energy is small.  相似文献   
994.
Black single crystals of [Lu(Db18c6)(H2O)3(thf)6]4(I3)2(I5)6(I8)(I12) were obtained from lutetium, I2 and Db18c6 (dibenzo‐18‐crown‐6) in THF solution. In the bulky cation, Lu3+ is surrounded by nine oxygen atoms, six of Db18c6 and three of water molecules to which two THF molecules are attached each. Meanwhile, four polyiodide anions, (I3), (I5), (I8)2– and (I12)2–, in a 2:6:1:1 ratio form a three‐dimensional network and leave space for the bulky cations.  相似文献   
995.
The reactions of [Re(CO)6]+, [FeCp(CO)2CS]+ and [FeCp(CNPh)3]+ with the metallo nitrile ylides [M{C+=N–C(H)CO2Et}(CO)5] (M = Cr, W) and the chromio nitrile imine [Cr{C+=N–NH}(CO)5] (generated by mono‐α‐deprotonation of the parent isocyanide complexes) to give neutral 5‐metallated 1,3‐oxazolin‐ ( 1 ), 1,3‐thiazolin‐ ( 2 ), imidazolin‐ ( 3 , 4 ), 1,3,4‐oxdiazolin‐ ( 5 ), 1,3,4‐thiadiazolin‐ ( 6 ) and 1,3,4‐triazolin‐2‐ylidene ( 8 ) chromium and tungsten complexes represent the first all‐organometallic versions of Huisgen’s 1,3‐dipolar cycloadditions. The formation of 6 and 8 is accompanied by partial decomposition to (OC)5Cr–C≡N–FeCpL2 {L = CO ( 7 ), CNPh ( 9 )}. The structures of 4a and 5 have been characterized by X‐ray diffraction.  相似文献   
996.
The branched tripodal chloro‐methyl‐siloxanes of the general formula tBuSi[{OSiMe2}yOSiMe3–xClx]3 [x = 0–3; y = 0–2] were synthesized, starting with tert‐Butyl‐trisilanol ( 1 ). The treatment of 1 with the chloro‐methyl‐silanes (Me3–xSiClx+1) (x = 0–3) in the presence of triethylamine leads to the compounds tBuSi(OSiMe2Cl)3 ( 2 ), tBuSi(OSiMeCl2)3 ( 3 ) and tBuSi(OSiCl3)3 ( 4 ). The siloxanes 2 – 4 are colourless oily liquids, which can be purified by distillation. Their yields decrease with the number of chloro substituents. In the reaction of compound 2 with three equivalents of water the silantriol tBuSi(OSiMe2OH)3 ( 5 ) is generated which is used to create the branched tripodal chloro‐methyl‐siloxanes tBuSi(OSiMe2OSiMe3)3 ( 6 ), tBuSi(OSiMe2OSiMe2Cl)3 ( 7 ), tBuSi(OSiMe2OSiMeCl2)3 ( 9 ) and tBuSi(OSiMe2OSiCl3)3 ( 10 ). Compound ( 7 ) is only a side product with a yield of 25 %., The cyclic tBuSi[{(OSiMe2)2Cl}(OSiMe2)3O] ( 8 ) can be isolated and characterised. The transformation of the compound tBuSi(OSiMe2OSiMe2Cl)3 ( 7 ) into the trisilanol tBuSi(OSiMe2OSiMe2OH)3 ( 11 ) allows to prepare the tripodale siloxane tBuSi(OSiMe2OSiMe2OSiMe3)3 ( 12 ) in good yields., The reaction of tBuSi(OSiMe2Cl)3 ( 2 ) with tert‐butyl trisilanol 1 leads to the formation of bicyclic tBuSi(OSiMe2O)3SitBu ( 13 ). An X‐ray structure determination on 13 reveals a [3.3.3]‐bicycle with a C3 axis, which crystallizes in the cubic crystal system in the space group Pa . The reported compounds 2 – 13 were characterised by NMR‐ and IR spectroscopy ( 5 , 11 ) and show correct elemental analyses. The 29Si‐NMR‐data of the compounds show interesting trends with respect to the Si–O chain length and the chloro substistuents.  相似文献   
997.
Bis(tetraphenylphosphonium) hexachloridodiberyllate, (Ph4P)2[Be2Cl6], reacts with excess trimethylsilyl‐iso‐thiocyanate to give a mixture of colourless single crystals of (Ph4P)2[Be(NCS)4] ( 1 ) and (Ph4P)4[{Be2(NCS)4(μ‐NCS)2}{Be2(NCS)6(μ‐H2N2C2S2)}] ( 2 ), which can be separated by selection. Both complexes were characterized by X‐ray diffraction. Compound 1 can be prepared without by‐products by treatment of (Ph4P)2[BeCl4] with excess Me3SiNCS in dichloromethane solution. 1 : Space group I41/a, Z = 4, lattice dimensions at 100(2) K: a = b = 1091.2(1), c = 3937.1(3) pm, R1 = 0.0474. The [Be(NCS)4]2– ion of 1 forms tetragonally distorted tetrahedral anions with Be–N distances of 168.4(2) pm and weak intermolecular S ··· S contacts along [100] and [010]. 2 ·4CH2Cl2: Space group P , Z = 1, lattice dimensions at 100(2) K: a = 919.5(1), b = 1248.3(1), c = 2707.0(2) pm, α = 101.61(1) °, β = 95.08(1) °, γ = 94.52(1) °, R1 = 0.103. Compound 2 contains two different anionic complexes in the ratio 1:1. In {Be2(NCS)4(μ‐NCS)2}2–, the beryllium atoms are connected by (NCS) bridging groups forming centrosymmetric eight‐membered Be2(NCS)2 rings with distances Be–N of 168(1) pm and Be–S of 235.2(9) pm. The second anion {Be2(NCS)6(μ‐H2N2C2S2)}2– consists of two {Be(NCS)3} units, which are linked by the nitrogen atoms of the unique dimeric cyclo‐addition product of HNCS with Be–N distances of 179(1) pm.  相似文献   
998.
Tri(mesityloxy)silanethiol (TMST) was isolated as the only product of the reaction between SiS2 and 2,4,6‐trimethylphenol. TMST crystallizes in the triclinic system. Good quality of the crystal allowed the unrestricted refinement of the mercapto group; the resulting S–H distance is 1.29(4) Å and the Si–S–H bond angle is 95.4(17)°. Molecules of TMST show no hydrogen bonds in the crystal – the FT‐IR spectrum of the solid sample exhibits a very sharp, well‐resolved band of isolated –SH group at 2562 cm–1.  相似文献   
999.
The iron complexes [(Et2Sb)4Fe4(CO)14] ( 1 ), [(nPr2Sb)4Fe3(CO)10] ( 2 ), [{(Me3SiCH2)2Sb}4Fe2(CO)6] ( 3 ), and [2‐(Me2NCH2)C6H4SbFe2(CO)8] ( 4 ) were prepared by reactions of distibanes with Fe2(CO)9. Compounds 1 – 4 were characterized by X‐ray diffraction, 1H NMR and IR spectroscopy as well as mass spectrometry; complex 1 was additionally characterized by density functional calculations.  相似文献   
1000.
X‐ray diffraction measurements were performed using synchrotron radiation at the SPring‐8 facility and electrochemical techniques to investigate the effect of polishing methods and storage conditions on the crystal structure of air‐formed oxide films and anodic oxide films formed on highly pure aluminum. Storage in an N2 environment hinders local film breakdown during anodizing, and it was established that the X‐ray diffraction measurements showed the presence of a γ‐Al2O3 in the anodic oxide film formed on mechanically polished (MP) specimens. Formation of γ‐Al2O3 during anodizing was inhibited by electropolishing because of the removal of the work‐hardened layer that was formed on the MP by electro‐polishing. The X‐ray diffraction results do not show clear differences in the influence of the polishing method on the crystal structure of air formed oxide film. This is due to the very fast oxidation rate of the air‐formed oxide film and very long storage times for the X‐ray measurements. The anodic oxide film formed on aluminum, which has a very flat surface, shows color and the color depended on grain orientation. The electrochemical impedance of the MP specimen is slightly lower than that of the mechanically and then electrochemically polished specimen at the middle frequency range. This impedance difference may be due to formation of γ‐Al2O3 in the amorphous anodic oxide film and the thickness of the film. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号