首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   634篇
  免费   40篇
  国内免费   61篇
化学   52篇
晶体学   1篇
力学   58篇
综合类   15篇
数学   380篇
物理学   229篇
  2024年   1篇
  2023年   6篇
  2022年   14篇
  2021年   18篇
  2020年   14篇
  2019年   12篇
  2018年   11篇
  2017年   16篇
  2016年   22篇
  2015年   11篇
  2014年   20篇
  2013年   39篇
  2012年   29篇
  2011年   36篇
  2010年   26篇
  2009年   37篇
  2008年   56篇
  2007年   37篇
  2006年   39篇
  2005年   33篇
  2004年   42篇
  2003年   29篇
  2002年   26篇
  2001年   24篇
  2000年   21篇
  1999年   15篇
  1998年   25篇
  1997年   15篇
  1996年   16篇
  1995年   8篇
  1994年   4篇
  1993年   3篇
  1992年   5篇
  1991年   6篇
  1990年   4篇
  1987年   1篇
  1984年   3篇
  1982年   1篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
排序方式: 共有735条查询结果,搜索用时 46 毫秒
101.
Topological singularity in a continuum theory of defects and a quantum field theory is studied from a viewpoint of differential geometry. The integrability conditions of singularity (Clairaut‐Schwarz‐Young theorem) are expressed by a torsion tensor and a curvature tensor when a Finslerian intrinsic parallelism holds for the multi‐valued function. In the context of the quantum field theory, the singularity called an extended object is expressed by the torsion when the intrinsic parallelism is related to the spontaneous breakdown of symmetry. In the continuum theory of defects, the path‐dependency of point and line defects within a crystal is interpreted by the non‐vanishing condition of torsion tensor in a non‐Riemannian space osculated from the Finsler space, and the domain is not simply connected. On the other hand, for the rotational singularity, an energy integral (J‐integral) around a disclination field is path‐independent when a nonlinear connection is single‐valued. This means that the topological expression for the sole defect (Gauss‐Bonnet theorem with genus ) is understood by the integrability of nonlinear connection.

  相似文献   

102.
The adiabatic‐connection framework has been widely used to explore the properties of the correlation energy in density‐functional theory. The integrand in this formula may be expressed in terms of the electron–electron interactions directly, involving intrinsically two‐particle expectation values. Alternatively, it may be expressed in terms of the kinetic energy, involving only one‐particle quantities. In this work, we explore this alternative representation for the correlation energy and highlight some of its potential for the construction of new density functional approximations. The kinetic‐energy based integrand is effective in concentrating static correlation effects to the low interaction strength regime and approaches zero asymptotically, offering interesting new possibilities for modeling the correlation energy in density‐functional theory  相似文献   
103.
运用马氏距离替代欧式距离改进传统的TOPSIS方法,解决当属性间存在线性相关时欧式距离失效的缺陷;充分考虑对立集合并引入联系向量距离,解决可能存在的方案距离正理想解和负理想解距离都近的缺陷.然后通过决策者偏好系数将马氏距离和联系向量距离所得结果合成新的相对贴近度,从而同时克服传统TOPSIS方法的以上两个缺陷.最后通过供应商选择的实例来验证方法的有效性.  相似文献   
104.
For an integer m ≥ 4, we define a set of 2[m/2] × 2[m/2] matrices γj (m), (j = 0, 1,..., m - 1) which satisfy γj (m)γk (m) +γk (m)γj (m) = 2ηjk (m)I[m/2], where (ηjk (m)) 0≤j,k≤m-1 is a diagonal matrix, the first diagonal element of which is 1 and the others are -1, I[m/2] is a 2[m/1] × 2[m/2] identity matrix with [m/2] being the integer part of m/2. For m = 4 and 5, the representation (m) of the Lorentz Spin group is known. For m≥ 6, we prove that (i) when m = 2n, (n ≥ 3), (m) is the group generated by the set of matrices {T|T=1/√ξ((I+k) 0 + 0 I-K) ( U 0 0 U), (ii) when m = 2n + 1 (n≥ 3), (m) is generated by the set of matrices {T|T=1/√ξ(I -k^- k I)U,U∈ (m-1),ξ=1-m-2 ∑k,j=0 ηkja^k a^j〉0, K=i[m-3 ∑j=0 a^j γj(m-2)+a^(m-2) In],K^-=i[m-3∑j=0 a^j γj(m-2)-a^(m-2) In]}  相似文献   
105.
106.
We prove that there is no Borel connection for non‐trivial pairs of unsplitting relations. This was conjectured in [3].  相似文献   
107.
We give a characterization of the fixed points and of the lattices of fixed points of fuzzy Galois connections. It is shown that fixed points are naturally interpreted as concepts in the sense of traditional logic.  相似文献   
108.
I investigate the evolution of finite temperature, classical Yang-Mills field equations under the influence of a chemical potential for Chern-Simons number Ncs. The rate of Ncs diffusion,, Γd, and the linear response of Ncs to a chemical potential, Γμ, are both computed; the relation Γd = 2Γμ is satisfied numerically and the results agree with the recent measurement of Γd by Ambjørn and Krasnitz. The response of Ncs under chemical potential remains linear at least to μ = 6T, which is impossible if there is a free energy barrier to the motion of Ncs. The possibility that the result depends on lattice artefacts via hard thermal loops is investigated by changing the lattice action and by examining elongated rectangular lattices; provided that the lattice is fine enough, the result is weakly if at all dependent on the specifics of the cutoff. I also compare SU(2) with SU(3) and find ΓSU(3) 7(s/w)4ΓSU(2).  相似文献   
109.
A gauge-invariant nonlinear Hodge-de Rham system is introduced. These equations have the same relation to the Yang-Mills equations that the conventional nonlinear Hodge equations have to the equations of classical Hodge theory. Conditions are given under which weak solutions are locally Hölder continuous. The existence of solutions is proven for variational points of a certain class of nonquadratic energy functionals.  相似文献   
110.
Based on the cosmological principle and quantum Yang-Mills gravity in the super-macroscopic limit, we obtain an exact recession velocity and cosmic redshift z, as measured in an inertial frame F ≡ F(t, x, y, z). For a matter-dominated universe, we have the effective cosmic metric tensor G_(μν)(t) =(B~2(t),-A~2(t),-A~2(t),-A~2(t)),A ∝ B ∝ t~(1/2), where t has the operational meaning of time in F frame. We assume a cosmic action S ≡ S cos involving Gμν(t) and derive the ‘Okubo equation' of motion, G μν(t)?μS ?νS-m2= 0, for a distant galaxy with mass m. This cos-√mic equation predicts an exact recession velocity, ■, where H = A˙(t)/A(t) and Co = B/A, as observed in the inertial frame F. For small velocities, we have the usual Hubble's law r≈ rH for recession velocities. Following the formulation of the accelerated Wu-Doppler effect, we investigate cosmic redshifts z as measured in F. It is natural to assume the massless Okubo equation, G μν(t)?μψe?νψe= 0, for light emitted from accelerated distant galaxies. Based on the principle of limiting continuation of physical laws, we obtain a transformation for covariant wave 4-vectors between and inertial and an accelerated frame, and predict a relationship for the exact recession velocity and cosmic redshift, z = [(1 + V_r)/(1-V_r~2)~(1/2)]-1, where Vr= r˙/Co 1, as observed in the inertial frame F. These predictions of the cosmic model are consistent with experiments for small velocities and should be further tested.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号