首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5019篇
  免费   599篇
  国内免费   300篇
化学   368篇
晶体学   2篇
力学   596篇
综合类   104篇
数学   3120篇
物理学   1728篇
  2024年   6篇
  2023年   68篇
  2022年   86篇
  2021年   105篇
  2020年   132篇
  2019年   101篇
  2018年   129篇
  2017年   189篇
  2016年   210篇
  2015年   151篇
  2014年   295篇
  2013年   359篇
  2012年   305篇
  2011年   288篇
  2010年   219篇
  2009年   270篇
  2008年   309篇
  2007年   318篇
  2006年   292篇
  2005年   261篇
  2004年   208篇
  2003年   228篇
  2002年   197篇
  2001年   193篇
  2000年   162篇
  1999年   142篇
  1998年   121篇
  1997年   103篇
  1996年   98篇
  1995年   84篇
  1994年   29篇
  1993年   34篇
  1992年   36篇
  1991年   25篇
  1990年   22篇
  1989年   8篇
  1988年   12篇
  1987年   17篇
  1986年   12篇
  1985年   23篇
  1984年   14篇
  1983年   4篇
  1982年   7篇
  1980年   10篇
  1979年   12篇
  1978年   3篇
  1976年   4篇
  1974年   2篇
  1973年   2篇
  1971年   2篇
排序方式: 共有5918条查询结果,搜索用时 15 毫秒
991.
随着光学陀螺等对重力加速度不敏感的陀螺器件的逐渐完善,一种源于静电陀螺的旋转调制技术备受关注,从而建立基于相对廉价的光学陀螺的高精度惯性导航系统成为可能.通过对单轴和双轴旋转调制技术原理和局限性的分析,提出了一种四陀螺双单轴旋转调制捷联惯导系统,并详细分析了旋转轴的不对准误差、惯性器件测量轴的不对准误差、常值漂移误差、...  相似文献   
992.
感应同步器鉴幅测角系统静态误差分析及关键电路设计   总被引:2,自引:1,他引:2  
本文系统论述了采用感应同步器进行角位置测量的连续绕组激磁,分段绕组输出的鉴幅方案,对这个方案的工作原理进行介绍,并对此方案产生的静态误差进行分析,给出减小误差的方法,最后得出相关结论。  相似文献   
993.
惯性导航系统水平误差对静电陀螺监控器的影响   总被引:1,自引:1,他引:1  
本文通过对监控器的工作原理进行分析,研究了惯导系统水平误差对监控器精度的影响关系,并对它们之间的误差关系进行了分析与仿真。误差分析与仿真表明,要保证监控器的精度优势,必须提高其水平基准精度,10"的水平精度是必需的  相似文献   
994.
We devise two novel techniques to optimize parameters which regulate dispersion and dissipation effects in numerical methods using the notion that dissipation neutralizes dispersion. These techniques are baptized as the minimized integrated error for low dispersion and low dissipation (MIELDLD) and the minimized integrated exponential error for low dispersion and low dissipation (MIEELDLD) . These two techniques of optimization have an advantage over the concept of minimized integrated square difference error (MISDE) , especially in the case when more than one optimal cfl is obtained, out of which only one of these values satisfy the shift condition. For instance, when MISDE is applied to the 1‐D Fromm's scheme, we have obtained two optimal cfl numbers: 0.28 and 1.0. However, it is known that Fromm's scheme satisfies shift condition only at r=1.0. Using MIELDLD and MIEELDLD , the optimal cfl of Fromm's scheme is computed as 1.0. We show that like the MISDE concept, both the techniques MIELDLD and MIEELDLD are effective to control dissipation and dispersion. The condition ν2>4µ is satisfied for all these three techniques of optimization, where ν and µ are parameters present in the Korteweg‐de‐Vries‐Burgers equation. The optimal cfl number for some numerical schemes namely Lax–Wendroff, Beam–Warming, Crowley and Upwind Leap‐Frog when discretized by the 1‐D linear advection equation is computed. The optimal cfl number obtained is in agreement with the shift condition. Some numerical experiments in 1‐D have been performed which consist of discontinuities and shocks. The dissipation and dispersion errors at some different cfl numbers for these experiments are quantified. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
995.
Different discretizations of the gradient and curl operators are considered for a staggered grid in a height‐based terrain‐following coordinate system. A combination of discrete operators is identified that guarantees the mimetic property that the curl of the gradient of any scalar vanishes identically. The result is illustrated with some numerical examples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
996.
The use of an adjoint technique for goal‐based error estimation described by Hartit et al. (Int. J. Numer. Meth. Fluids 2005; 47 :1069–1074) is extended to the numerical solution of free boundary problems that arise in elastohydrodynamic lubrication (EHL). EHL systems are highly nonlinear and consist of a thin‐film approximation of the flow of a non‐Newtonian lubricant which separates two bodies that are forced together by an applied load, coupled with a linear elastic model for the deformation of the bodies. A finite difference discretization of the line contact flow problem is presented, along with the numerical evaluation of an exact solution for the elastic deformation, and a moving grid representation of the free boundary that models cavitation at the outflow in this one‐dimensional case. The application of a goal‐based error estimate for this problem is then described. This estimate relies on the solution of an adjoint problem; its effectiveness is demonstrated for the physically important goal of the total friction through the contact. Finally, the application of this error estimate to drive local mesh refinement is demonstrated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
997.
We present a cavitation model based on the Stokes equation and formulate adaptive finite element methods for its numerical solution. A posteriori error estimates and adaptive algorithms are derived, and numerical examples illustrating the theory are supplied, in particular with comparison to the simplified Reynolds model of lubrication. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
998.
An adaptive mixed least squares Galerkin/Petrov finite element method (FEM) is developed for stationary conduction convection problems. The mixed least squares Galerkin/Petrov FEM is consistent and stable for any combination of discrete velocity and pressure spaces without requiring the Babuska-Brezzi stability condition. Using the general theory of Verfürth, the posteriori error estimates of the residual type are derived. Finally, numerical tests are presented to illustrate the effectiveness of the method.  相似文献   
999.
跨音速翼型和机翼的气动优化设计   总被引:2,自引:0,他引:2  
以NACA0012翼型和ONERA-M6机翼为基准,分别把可变误差多面体法(VEP)和遗传算法(GA)两种不同的优化方法与求解二维和三维欧拉方程的气动分析相结合,进行跨音速翼型和机翼的气动优化设计,并在其基础上对两种不同性质的优化方法在气动优化设计应用中的优化质量和计算效率进行比较,在优化设计的过程中,翼型通过解析函数线性叠加法来表示,机翼通过不变的翼型和可变的平面形状来表示,二维和三维欧拉方程采用Jamenson提出的有限体积方案,显式四步RungeKutta时间推进求解。  相似文献   
1000.
本推导了静电陀螺仪转子动量矩的运动方程,根据此方程并应用向量场理论,将造成静电陀螺漂移的外部干扰力矩划分为守恒力矩和非守恒力矩两部分。按照进动规律,最终得到静电陀螺监控器中陀螺仪漂移误差模型的全量形式。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号