首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16896篇
  免费   3207篇
  国内免费   2764篇
化学   9593篇
晶体学   176篇
力学   1462篇
综合类   146篇
数学   2259篇
物理学   9231篇
  2024年   57篇
  2023年   212篇
  2022年   512篇
  2021年   568篇
  2020年   730篇
  2019年   576篇
  2018年   556篇
  2017年   622篇
  2016年   734篇
  2015年   664篇
  2014年   969篇
  2013年   1494篇
  2012年   1008篇
  2011年   1134篇
  2010年   997篇
  2009年   1191篇
  2008年   1222篇
  2007年   1225篇
  2006年   1164篇
  2005年   913篇
  2004年   820篇
  2003年   770篇
  2002年   624篇
  2001年   541篇
  2000年   523篇
  1999年   468篇
  1998年   414篇
  1997年   327篇
  1996年   265篇
  1995年   239篇
  1994年   204篇
  1993年   153篇
  1992年   125篇
  1991年   129篇
  1990年   88篇
  1989年   84篇
  1988年   75篇
  1987年   66篇
  1986年   60篇
  1985年   58篇
  1984年   42篇
  1983年   24篇
  1982年   37篇
  1981年   37篇
  1980年   29篇
  1979年   28篇
  1978年   12篇
  1977年   22篇
  1976年   13篇
  1974年   10篇
排序方式: 共有10000条查询结果,搜索用时 359 毫秒
991.
992.
The efficient collection of solar energy relies on the design and construction of well‐organized light‐harvesting systems. Herein we report that supramolecular phenanthrene polymers doped with pyrene are effective collectors of light energy. The linear polymers are formed through the assembly of short amphiphilic oligomers in water. Absorption of light by phenanthrene residues is followed by electronic energy transfer along the polymer over long distances (>100 nm) to the accepting pyrene molecules. The high efficiency of the energy transfer, which is documented by large fluorescence quantum yields, suggests a quantum coherent process.  相似文献   
993.
994.
Double‐wall carbon nanotubes (DWCNTs) with pyridyl units covalently attached to the external wall through isoxazolino linkers and carboxylic groups that have been esterified by pentyl chains are synthesized. The properties of these modified DWCNTs are then compared with an analogous sample based on single‐wall carbon nanotubes (SWCNTs). Raman spectroscopy shows the presence of characteristic radial breathing mode vibrations, confirming that the samples partly retain the integrity of the nanotubes in the case of DWCNTs, including the internal and external nanotubes. Quantification of the pyridyl content for both samples (DWCNT and SWCNT derivatives) is based on X‐ray photoelectron spectroscopy and thermogravimetric profiles, showing very similar substituent load. Both pyridyl‐containing nanotubes (DWCNTs and SWCNTs) form a complex with zinc porphyrin (ZnP), as evidenced by the presence of two isosbestic points in the absorption spectra of the porphyrin upon addition of the pyridyl‐functionalized nanotubes. Supramolecular complexes based on pyridyl‐substituted DWCNTs and SWCNTs quench the emission and the triplet excited state identically, through an energy‐transfer mechanism based on pre‐assembly of the ground state. Thus, the presence of the intact inner wall in DWCNTs does not influence the quenching behavior, with respect to SWCNTs, for energy‐transfer quenching with excited ZnP. These results sharply contrast with previous ones referring to electron‐transfer quenching, in which the double‐wall morphology of the nanotubes has been shown to considerably reduce the lifetime of charge separation, owing to faster electron mobility in DWCNTs compared to SWCNTs.  相似文献   
995.
The global minima of Be2N2, Be3N2 and BeSiN2 clusters are identified using a modified stochastic kick methodology. The structure, stability and bonding nature of these clusters bound to noble gas (Ng) atoms are studied at the MP2/def2‐QZVPPD level of theory. Positive Be?Ng bond dissociation energy, which gradually increases down Group 18 from He to Rn, indicates the bound nature of Ng atoms. All of the Ng‐binding processes are exothermic in nature. The Xe and Rn binding to Be2N2 and Be3N2 clusters and Ar?Rn binding to BeSiN2 are exergonic processes at room temperature; however, for the lighter Ng atoms, lower temperatures are needed. Natural population analysis, Wiberg bond index computations, electron density analysis, and energy decomposition analysis are performed to better understand the nature of Be?Ng bonds.  相似文献   
996.
The activation energy is the minimum amount of energy required to initiate a reaction. It is one of the important indexes for appraising a reaction. The chemical reaction rate is closely related to the value of activation energy, and reducing activation energy is propitious to promoting a chemical reaction. In the present paper, the relationship between the activation energy in Si-KOH reaction system and the ultrasound frequency and power has been discussed for the first time. The range of ultrasound frequency and power is 40-100kHz (interval by 20kHz) and 10-50W (interval by 10W), respectively. The experimental clata indicate that the activation energy decreases with the increasing ultrasound power. Comparing with the activation energy without ultrasound irradiation, the results in our paper indicate that ultrasound irradiation could reduce the activation energy in Si-KOH reaction system and increase the reaction rate.  相似文献   
997.
We present a robust protocol based on iterations of free energy perturbation (FEP) calculations, chemical synthesis, biophysical mapping and X-ray crystallography to reveal the binding mode of an antagonist series to the A2A adenosine receptor (AR). Eight A2AAR binding site mutations from biophysical mapping experiments were initially analyzed with sidechain FEP simulations, performed on alternate binding modes. The results distinctively supported one binding mode, which was subsequently used to design new chromone derivatives. Their affinities for the A2AAR were experimentally determined and investigated through a cycle of ligand-FEP calculations, validating the binding orientation of the different chemical substituents proposed. Subsequent X-ray crystallography of the A2AAR with a low and a high affinity chromone derivative confirmed the predicted binding orientation. The new molecules and structures here reported were driven by free energy calculations, and provide new insights on antagonist binding to the A2AAR, an emerging target in immuno-oncology.  相似文献   
998.
The dicarbollide ion, nido-C2B9H112− is isoelectronic with cyclopentadienyl. Herein, we make dysprosiacarboranes, namely [(C2B9H11)2Ln(THF)2][Na(THF)5] (Ln=Dy, 1Dy ) and [(THF)3(μ-H)3Li]2[{η5-C6H4(CH2)2C2B9H9}Dy{η25-C6H4(CH2)2C2B9H9}2Li] 3Dy and show that dicarbollide ligands impose strong magnetic axiality on the central DyIII ion. The effective energy barrier (Ueff) for the loss of magnetization can be varied by the substitution pattern on the dicarbollide. This finding is demonstrated by comparing complexes of nido-C2B9H112− and nido-[o-xylylene-C2B9H9]2−, which show a Ueff of 430(5) K and 804(7) K, respectively. The blocking temperature defined by the open hysteresis temperature of 3Dy reaches 6.8 K. Moreover, the linear complex [Dy(C2B9H11)2] is predicted to have comparable properties with the linear [Dy(CpMe3)2]+ complex. As such, carboranyl ligands and their derivatives may provide a new type of organometallic ligand for high-performance single-molecule magnets.  相似文献   
999.
The incorporation of impurity ions or doping is a promising method for controlling the electronic and optical properties and the structural stability of halide perovskite nanocrystals (NCs). Herein, we establish relationships between rare-earth ions doping and intrinsic emission of lead-free double perovskite Cs2AgInCl6 NCs to impart and tune the optical performances in the visible light region. Tb3+ ions were incorporated into Cs2AgInCl6 NCs and occupied In3+ sites as verified by both crystallographic analyses and first-principles calculations. Trace amounts of Bi doping endowed the characteristic emission (5D47F6-3) of Tb3+ ions with a new excitation peak at 368 nm rather than the single characteristic excitation at 290 nm of Tb3+. By controlling Tb3+ ions concentration, the emission colors of Bi-doped Cs2Ag(In1−xTbx)Cl6 NCs could be continuously tuned from green to orange, through the efficient energy-transfer channel from self-trapped excitons to Tb3+ ions. Our study provides the salient features of the material design of lead-free perovskite NCs and to expand their luminescence applications.  相似文献   
1000.
Herein, we introduce the cyclic 8π-electron (C8π) molecule N,N′-diaryl-dihydrodibenzo[a,c]phenazine ( DPAC ) as a dual-functional donor to establish a series of new donor–linker–acceptor (D–L–A) dyads DLA1 – DLA5 . The excited-state bent-to-planar dynamics of DPAC regulate the energy gap of the donor, while the acceptors A1 – A5 are endowed with different energy gaps and HOMO/LUMO levels. As a result, the rate and efficiency of the excited-state electron transfer vs. energy transfer can be finely harnessed, which is verified via steady-state spectroscopy and time-resolved emission measurements. This comprehensive approach demonstrates, for the first time, the manifold of excited-state properties governed by bifunctional donor-based D–L–A dyads, including bent-to-planar, photoinduced electron transfer (PET) from excited donor to acceptor (oxidative-PET), fluorescence resonance energy transfer (FRET), bent-to-planar followed by electron transfer (PFET), and PET from donor to excited acceptor (reductive-PET).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号