首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1266篇
  免费   176篇
  国内免费   75篇
化学   797篇
晶体学   3篇
力学   159篇
综合类   10篇
数学   294篇
物理学   254篇
  2023年   13篇
  2022年   26篇
  2021年   34篇
  2020年   64篇
  2019年   55篇
  2018年   36篇
  2017年   38篇
  2016年   65篇
  2015年   61篇
  2014年   70篇
  2013年   119篇
  2012年   84篇
  2011年   85篇
  2010年   83篇
  2009年   64篇
  2008年   75篇
  2007年   60篇
  2006年   72篇
  2005年   49篇
  2004年   52篇
  2003年   40篇
  2002年   26篇
  2001年   20篇
  2000年   22篇
  1999年   20篇
  1998年   29篇
  1997年   29篇
  1996年   15篇
  1995年   14篇
  1994年   9篇
  1993年   8篇
  1992年   16篇
  1991年   4篇
  1990年   5篇
  1989年   6篇
  1988年   6篇
  1987年   6篇
  1986年   4篇
  1985年   2篇
  1983年   3篇
  1982年   3篇
  1981年   4篇
  1979年   4篇
  1978年   3篇
  1977年   2篇
  1976年   5篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1936年   1篇
排序方式: 共有1517条查询结果,搜索用时 15 毫秒
61.
Inorganic, lead-free metal halides are widely sought after following the rise of the halide perovskites as outstanding optoelectronic materials, due to their enhanced stability and reduced toxicity. Herein, we report on the solvothermal synthesis of Rb7Sb3Br16, which exhibits a 0D structure comprised of [SbBr6]3− octahedra and edge-sharing bioctahedra [Sb2Br10]4− dimers that order into layers along the c-axis. This all-inorganic material is air-stable and exhibits weak orange photoluminescence (PL) at room temperature. Low-temperature PL and PL excitation (PLE) measurements reveal the presence of two distinct emission bands that originate from these structural units, with the high-energy emission quenching as temperature rises beyond 150 K. We are also able to obtain Rb7Bi3Br16 and Rb7Bi3I16 which both crystallize in orthorhombic symmetry, with Rb7Bi3Br16 presenting weak low-temperature luminescence while Rb7Bi3I16 is non-luminescent. This work expands the library of emissive inorganic metal halides and provides further evidence for the efficacy of low-dimensional Sb−X luminescent centers based on octahedral and edge-sharing [Sb2X10]4− dimers.  相似文献   
62.
A novel conductive anionic hydrogel was synthesized for use as a solid electrolyte for electrochemical impedance spectroscopy (EIS) characterization of the barrier properties of protective coatings on outdoor metalworks, such as bronze sculptures. The AMPS‐co‐PAA hydrogel was soaked in a variety of aqueous salt solutions and characterized by swelling capacity and conductivity in order to determine the most appropriate gel/liquid electrolyte combination for use on culturally significant objects. K2PIPES‐equilibrated hydrogels were selected as the preferred electrodes for this particular application and were used to measure the impedance of a coated substrate, yielding spectra similar to those from standard liquid cells.  相似文献   
63.
Cationic polymers can bind DNA to form polyplexes, which are noncovalent complexes used for gene delivery into the targeted cells. For more insight on such biologically relevant systems, the noncovalent complexes between the cationic polymer poly(ethylene imine) (PEI) and the nucleotide mimicking dye Cibacron Blue F3G‐A (CB) were investigated using mass spectrometry methods. Two PEIs of low molecular weight were utilized (Mn ≈ 423 and 600 Da). The different types of CB anions produced by Na+/H+ exchanges on the three sulfonic acid groups of CB and their dehydrated counterparts were responsible for complex formation with PEI. The CB anions underwent noncovalent complex formation with protonated, but not with sodiated PEI. A higher proportion of cyclic oligomers were detected in PEI423 than PEI600, but both architectures formed association products with CB. Tandem mass spectrometry studies revealed a significantly stronger noncovalent interaction between PEI and dehydrated CB than between PEI and intact CB. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
64.
Host?guest complexes between cucurbit[7] (CB[7]) or CB[8] and diamantane diammonium ion guests 3 or 6 were studied by 1H NMR spectroscopy and X‐ray crystallography. 1H NMR competition experiments revealed that CB[7]? 6 is among the tightest monovalent non‐covalent complexes ever reported in water with Ka=7.2×1017 M ?1 in pure D2O and 1.9×1015 M ?1 in D2O buffered with NaO2CCD3 (50 mM ). The crystal structure of CB[7]? 6 allowed us to identify some of the structural features responsible for the ultratight binding, including the distance between the NMe3+ groups of 6 (7.78 Å), which allows it to establish 14 optimal ion‐dipole interactions with CB[7], the complementarity of the convex van der Waals surface contours of 6 with the corresponding concave surfaces of CB[7], desolvation of the C?O portals within the CB[7]? 6 complex, and the co‐linearity of the C7 axis of CB[7] with the N+???N+ line in 6 . This work further blurs the lines of distinction between natural and synthetic receptors.  相似文献   
65.
This work describes the synthesis and full characterization of a series of GaCl3 and B(C6F5)3 adducts of diazenes R1?N?N?R2 (R1=R2=Me3Si, Ph; R1=Me3Si, R2=Ph). Trans‐Ph?N?N?Ph forms a stable adduct with GaCl3, whereas no adduct, but instead a frustrated Lewis acid–base pair is formed with B(C6F5)3. The cis‐Ph?N?N?Ph ? B(C6F5)3 adduct could only be isolated when UV light was used, which triggers the isomerization from trans‐ to cis‐Ph?N?N?Ph, which provides more space for the bulky borane. Treatment of trans‐Ph?N?N?SiMe3 with GaCl3 led to the expected trans‐Ph?N?N?SiMe3 ? GaCl3 adduct but the reaction with B(C6F5)3 triggered a 1,2‐Me3Si shift, which resulted in the formation of a highly labile iso‐diazene, Me3Si(Ph)N?N; stabilized as a B(C6F5)3 adduct. Trans‐Me3Si?N?N?SiMe3 forms a labile cis‐Me3Si?N?N?SiMe3 ? B(C6F5)3 adduct, which isomerizes to give the transient iso‐diazene species (Me3Si)2N?N ? B(C6F5)3 upon heating. Both iso‐diazene species insert easily into one B?C bond of B(C6F5)3 to afford hydrazinoboranes. All new compounds were fully characterized by means of X‐ray crystallography, vibrational spectroscopy, CHN analysis, and NMR spectroscopy. All compounds were further investigated by DFT and the bonding situation was assessed by natural bond orbital (NBO) analysis.  相似文献   
66.
Several, partly new, ionic liquids (ILs) containing imidazolium and ammonium cations as well as the medium‐sized [NTf2]? (0.230 nm3; Tf=CF3SO3?) and the large [Al(hfip)4]? (0.581 nm3; hfip=OC(H)(CF3)2) anions were synthesized and characterized. Their temperature‐dependent viscosities and conductivities between 25 and 80 °C showed typical Vogel–Fulcher–Tammann (VFT) behavior. Ion‐specific self‐diffusion constants were measured at room temperature by pulsed‐gradient stimulated‐echo (PGSTE) NMR experiments. In general, self‐diffusion constants of both cations and anions in [Al(hfip)4]?‐based ILs were higher than in [NTf2]?‐based ILs. Ionicities were calculated from self‐diffusion constants and measured bulk conductivities, and showed that [Al(hfip)4]?‐based ILs yield higher ionicities than their [NTf2]? analogues, the former of which reach values of virtually 100 % in some cases.From these observations it was concluded that [Al(hfip)4]?‐based ILs come close to systems without any interactions, and this hypothesis is underlined with a Hirshfeld analysis. Additionally, a robust, modified Marcus theory quantitatively accounted for the differences between the two anions and yielded a minimum of the activation energy for ion movement at an anion diameter of slightly greater than 1 nm, which fits almost perfectly the size of [Al(hfip)4]?. Shallow Coulomb potential wells are responsible for the high mobility of ILs with such anions.  相似文献   
67.
1‐n‐Butyl‐2,3‐dimethylimidazolium (BMMI) ionic liquids (ILs) associated with different anions undergo H/D exchange preferentially at 2‐Me group of the imidazolium in deuterated solvents. This process is mainly related to the existence of ion pairs rather than the anion basicity. The H/D exchange occurs in solvents (CDCl3 and MeCN for instance) in which intimate contact ion pairs are present and the anion possesses a labile H in its structure, such as hydrogen carbonate and prolinate. In D2O, separated ion pairs are formed and the H/D exchange does not occur. A plausible catalytic cycle is that the IL behaves as a neutral base in the course of all H/D exchange processes. NMR experiments, density functional calculations, and molecular dynamics simulations corroborate these hypotheses.  相似文献   
68.
The change from “quasi” contact to “quasi” solvent‐separated ion‐pair configuration in the local environment of a probe molecule in ionic liquids depends on the varying interaction strength of the chosen anions. The ion speciation in these Coulomb fluids could be shown by combining infrared spectroscopy, density functional theory calculations, and natural bond orbital analysis using a low‐self‐clustering probe molecule.  相似文献   
69.
The cation–anion and cation–solvent interactions in solutions of the protic ionic liquid (PIL) [Et3NH][I] dissolved in solvents of different polarities are studied by means of far infrared vibrational (FIR) spectroscopy and density functional theory (DFT) calculations. The dissociation of contact ion pairs (CIPs) and the resulting formation of solvent‐separated ion pairs (SIPs) can be observed and analyzed as a function of solvent concentration, solvent polarity, and temperature. In apolar environments, the CIPs dominate for all solvent concentrations and temperatures. At high concentrations of polar solvents, SIPs are favored over CIPs. For these PIL/solvent mixtures, CIPs are reformed by increasing the temperature due to the reduced polarity of the solvent. Overall, this approach provides equilibrium constants, free energies, enthalpies, and entropies for ion‐pair formation in trialkylammonium‐containing PILs. These results have important implications for the understanding of solvation chemistry and the reactivity of ionic liquids.  相似文献   
70.
Back electron transfer (BET) is one of the important processes that govern the decay of generated ion pairs in intermolecular photoinduced electron transfer reactions. Unfortunately, a detailed mechanism of BET reactions remains largely unknown in spite of their importance for the development of molecular photovoltaic structures. Here, we examine the BET reaction of pyrene (Py) and 1,4‐dicyanobenzene (DCB) in acetonitrile (ACN) by using time‐resolved near‐ and mid‐IR spectroscopy. The Py dimer radical cation (Py2.+) and DCB radical anion (DCB.?) generated after photoexcitation of Py show asynchronous decay kinetics. To account for this observation, we propose a reaction mechanism that involves electron transfer from DCB.? to the solvent and charge recombination between the resulting ACN dimer anion and Py2.+. The unique role of ACN as a charge mediator revealed herein could have implications for strategies that retard charge recombination in dye‐sensitized solar cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号