首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2564篇
  免费   158篇
  国内免费   213篇
化学   98篇
晶体学   1篇
力学   274篇
综合类   59篇
数学   2179篇
物理学   324篇
  2024年   5篇
  2023年   25篇
  2022年   30篇
  2021年   41篇
  2020年   42篇
  2019年   58篇
  2018年   52篇
  2017年   61篇
  2016年   54篇
  2015年   68篇
  2014年   128篇
  2013年   157篇
  2012年   97篇
  2011年   157篇
  2010年   149篇
  2009年   176篇
  2008年   170篇
  2007年   165篇
  2006年   186篇
  2005年   152篇
  2004年   102篇
  2003年   108篇
  2002年   101篇
  2001年   94篇
  2000年   83篇
  1999年   86篇
  1998年   62篇
  1997年   71篇
  1996年   60篇
  1995年   46篇
  1994年   35篇
  1993年   27篇
  1992年   18篇
  1991年   6篇
  1990年   13篇
  1989年   5篇
  1988年   4篇
  1987年   4篇
  1986年   7篇
  1985年   4篇
  1984年   7篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1980年   4篇
  1979年   2篇
  1977年   2篇
  1976年   3篇
  1973年   1篇
  1971年   1篇
排序方式: 共有2935条查询结果,搜索用时 11 毫秒
91.
Lithium ion batteries (LIBs) have broad applications in a wide variety of a fields pertaining to energy storage devices. In line with the increasing demand in emerging areas such as long-range electric vehicles and smart grids, there is a continuous effort to achieve high energy by maximizing the reversible capacity of electrode materials, particularly cathode materials. However, in recent years, with the continuous enhancement of battery energy density, safety issues have increasingly attracted the attention of researchers, becoming a non-negligible factor in determining whether the electric vehicle industry has a foothold. The key issue in the development of battery systems with high specific energies is the intrinsic instability of the cathode, with the accompanying question of safety. The failure mechanism and stability of high-specific-capacity cathode materials for the next generation of LIBs, including nickel-rich cathodes, high-voltage spinel cathodes, and lithium-rich layered cathodes, have attracted extensive research attention. Systematic studies related to the intrinsic physical and chemical properties of different cathodes are crucial to elucidate the instability mechanisms of positive active materials. Factors that these studies must address include the stability under extended electrochemical cycles with respect to dissolution of metal ions in LiPF6-based electrolytes due to HF corrosion of the electrode; cation mixing due to the similarity in radius between Li+ and Ni2+; oxygen evolution when the cathode is charged to a high voltage; the origin of cracks generated during repeated charge/discharge processes arising from the anisotropy of the cell parameters; and electrolyte decomposition when traces of water are present. Regulating the surface nanostructure and bulk crystal lattice of electrode materials is an effective way to meet the demand for cathode materials with high energy density and outstanding stability. Surface modification treatment of positive active materials can slow side reactions and the loss of active material, thereby extending the life of the cathode material and improving the safety of the battery. This review is targeted at the failure mechanisms related to the electrochemical cycle, and a synthetic strategy to ameliorate the properties of cathode surface locations, with the electrochemical performance optimized by accurate surface control. From the perspective of the main stability and safety issues of high-energy cathode materials during the electrochemical cycle, a detailed discussion is presented on the current understanding of the mechanism of performance failure. It is crucial to seek out favorable strategies in response to the failures. Considering the surface structure of the cathode in relation to the stability issue, a newly developed protocol, known as surface-localized doping, which can exist in different states to modify the surface properties of high-energy cathodes, is discussed as a means of ensuring significantly improved stability and safety. Finally, we envision the future challenges and possible research directions related to the stability control of next-generation high-energy cathode materials.  相似文献   
92.
以三羟甲基丙烷三丙烯酸酯(TMPTA)-苯乙烯(St)为单体,偶氮二异丁腈(AIBN)为自由基引发剂,通过在乙醇中的沉淀聚合可制得高交联单分散P(TMPTA-St)聚合物微球.对单体转化率,微球以及可溶性低聚物的产率进行了测试.结果表明,使用10 wt%至60 wt%的交联剂TMPTA进行聚合可获得单分散微球,产率在50%左右.增加TMPTA用量可提高微球产率和单体转化率.增加引发剂AIBN用量对提高微球产率也有促进作用,但同时可溶性低聚物产率也增加.向乙醇中加入水作为反应介质结合适当增加AIBN用量可使单体转化率达到98%,微球产率高于90%.对实验结果进行了解释,对聚合机理进行了讨论.  相似文献   
93.
The application of mobile near-infrared (NIR) spectrometers in field measurements is growing. Calibration transfer techniques offer simple solutions for enabling models constructed on benchtop instruments for use on mobile spectrometers. Since different types of spectrometers with different components, scanning ranges and resolutions cause great differences in the spectral response, calibration transfer is difficult to apply. In this paper, we focus on calibration transfer among benchtop, portable and handheld spectrometers by a method of calibration transfer based on canonical correlation analysis (CTCCA). Its capability was illustrated by the example of a group of NIR spectra dataset for predicting reducing sugars, total sugar, and nicotine contents in tobacco leaves. The experimental results showed that the transferability of CTCCA was superior to other conventional calibration transfer methods, including piecewise direct standardization, spectral space transformation, calibration transfer based on independent component analysis, and calibration transfer based on the weight matrix. Moreover, the best transfer results were obtained in the three cases by canonical correlation analysis method executing transfer while the spectra were not interpolated, which shows that this approach has the advantage of easy implementation for calibration transfer. Therefore, CTCCA without interpolation calculation offers a new and simple solution for transferring the spectra acquired by mobile spectrometers to the optimized spectral models built on benchtop devices to improve the accuracy of the results. Additionally, the results show that the benchtop spectrometer is more suitable as the master instrument for calibration transfer with more accurate prediction than using a portable device as the master.  相似文献   
94.
研究了硝酸盐和亚硝酸盐的紫外吸收光谱。利用基于BP算法的人工神经网络对光谱数据处理,提出同时测定水样中硝酸盐氮和亚硝酸盐氮的新方法。对人工合成试样和实际水样进行了测定。结果满意。采用均匀设计法构建试验系统及网络运行参数的选择。效果良好。  相似文献   
95.
分散聚合制备粒度均匀的聚甲基丙烯酸环氧丙酯微球   总被引:13,自引:0,他引:13  
文中描述了粒度均匀的聚甲基丙烯酸环氧丙酯微球的制备,所采用的是分散聚合方法,系统地研究了溶剂体系、单体浓度、引发剂类型与浓度、稳定剂用量、反应温度等各种聚合参数,对聚合产物粒度及其分散性的影响.在优化反应条件的基础上,制备出了微米级(1~8μm)粒度均匀性基本呈现单分散的聚合物微球.  相似文献   
96.
In present work, a kind of spectral meshless radial point interpolation (SMRPI) technique is applied to the time fractional nonlinear Schrödinger equation in regular and irregular domains. The applied approach is based on erudite combination of meshless methods and spectral collocation techniques. The point interpolation method with the help of radial basis functions is used to construct shape functions which play as basis functions in the frame of SMRPI. It is proved the scheme is unconditionally stable with respect to the time variable in and also convergent by the order of convergence , . In the current work, the thin plate spline are used as the basis functions and to eliminate the nonlinearity, a simple predictor‐corrector (P‐C) scheme is performed. It is shown that the SMRPI solution, as a complex function, is suitable one for the time fractional nonlinear Schrödinger equation. The results of numerical experiments are compared to analytical solutions to confirm the reliable treatment of these stable solutions. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1043–1069, 2017  相似文献   
97.
Based on an idea of Rosenblatt, the methods of interpolation theory are used to establish moment inequalities and equivalence relations for measures of dependence between two or more families of random variables. A couple of “interpolation” theorems proved here appear to be new.  相似文献   
98.
以分割区域D为基础将解析函数与共轭解析函数的微分中值定理推广到高阶形式.  相似文献   
99.
100.
Our object is to present an independent proof of the extension of V.A. Markov's theorem to Gâteaux derivatives of arbitrary order for continuous polynomials on any real normed linear space. The statement of this theorem differs little from the classical case for the real line except that absolute values are replaced by norms. Our proof depends only on elementary computations and explicit formulas and gives a new proof of the classical theorem as a special case. Our approach makes no use of the classical polynomial inequalities usually associated with Markov's theorem. Instead, the essential ingredients are a Lagrange interpolation formula for the Chebyshev nodes and a Christoffel-Darboux identity for the corresponding bivariate Lagrange polynomials. We use these tools to extend a single variable inequality of Rogosinski to the case of two real variables. The general Markov theorem is an easy consequence of this.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号