首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5974篇
  免费   234篇
  国内免费   102篇
化学   113篇
晶体学   11篇
力学   1316篇
综合类   6篇
数学   3725篇
物理学   1139篇
  2024年   4篇
  2023年   41篇
  2022年   55篇
  2021年   75篇
  2020年   169篇
  2019年   174篇
  2018年   151篇
  2017年   123篇
  2016年   118篇
  2015年   153篇
  2014年   274篇
  2013年   767篇
  2012年   269篇
  2011年   363篇
  2010年   331篇
  2009年   394篇
  2008年   381篇
  2007年   383篇
  2006年   271篇
  2005年   186篇
  2004年   173篇
  2003年   158篇
  2002年   137篇
  2001年   108篇
  2000年   112篇
  1999年   97篇
  1998年   102篇
  1997年   77篇
  1996年   85篇
  1995年   67篇
  1994年   69篇
  1993年   77篇
  1992年   47篇
  1991年   50篇
  1990年   40篇
  1989年   31篇
  1988年   29篇
  1987年   25篇
  1986年   19篇
  1985年   12篇
  1984年   18篇
  1983年   7篇
  1982年   16篇
  1981年   16篇
  1980年   10篇
  1979年   10篇
  1978年   7篇
  1977年   13篇
  1976年   8篇
  1975年   4篇
排序方式: 共有6310条查询结果,搜索用时 15 毫秒
31.
This paper provides a new proof of design sensitivity of the static response of some typical structures. These structures (beams, plates, and plane elastic solids) have been described previously. A proof of design sensitivity of the inverse state operator was provided there, and design sensitivity of static response was derived. The proof presented here is simpler and self-contained.  相似文献   
32.
屈军 《化学物理学报》2001,14(2):176-180
有随机模拟方法研究了化学昆沌模型的介观动力学。对该混沌模型的系综模拟发现,在这种不稳定运动中存在强烈的内部涨落,然而由于混沌运动整体上的稳定性,使得系综中的代表点被限制在混沌吸引子上,并且单个代表点形成的随机轨道很好地保持了确定性混沌吸引子的基本特征。  相似文献   
33.
When simulating free‐surface flows using the finite element method, there are many cases where the governing equations require information which must be derived from the available discretized geometry. Examples are curvature or normal vectors. The accurate computation of this information directly from the finite element mesh often requires a high degree of refinement—which is not necessarily required to obtain an accurate flow solution. As a remedy and an option to be able to use coarser meshes, the representation of the free surface using non‐uniform rational B‐splines (NURBS) curves or surfaces is investigated in this work. The advantages of a NURBS parameterization in comparison with the standard approach are discussed. In addition, it is explored how the pressure jump resulting from surface tension effects can be handled using doubled interface nodes. Numerical examples include the computation of surface tension in a two‐phase flow as well as the computation of normal vectors as a basis for mesh deformation methods. For these examples, the improvement of the numerical solution compared with the standard approaches on identical meshes is shown. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
34.
The influence of aspect ratio in three‐dimensional, numerical experiments of separated flows is studied in the case of the backward‐facing step at Reynolds numbers 600, 800, and 950. The computational domain is designed as an actual laboratory experiment. The governing equations are the steady state, isothermal, and incompressible Navier–Stokes equations. The expansion ratio of the computational domain is 1:2. The aspect ratio varies from 1:10 to 1:40. The results of the computations focus on the spanwise variations of the length and the strength of the two eddies along the lower and upper wall. It is concluded that both numerical and laboratory experiments should be designed with an aspect ratio of at least 1:20, if only the accuracy of the position of the detachment and the re‐attachment points matters. If the accuracy of the shear‐stress distributions is also taken into account, then an aspect ratio of at least 1:30 should be chosen. Finally, if the magnitudes of the vortex centers are also considered, then only the aspect ratio of 1:40 qualifies for a realization of two‐dimensional flow conditions in the plane of symmetry. This is contrary to the common practice in the field, at least from the side of laboratory experiments, where an aspect ratio of 1:10 is still considered adequate for this purpose. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
35.
The paper deals with homogeneous random planar tessellations stable under iteration (random STIT tessellations). The length distribution of the typical I-segment is already known in the isotropic case [8]. In the present paper, the anisotropic case is treated. Then also the direction of the typical I-segment is of interest. The joint distribution of direction and length of the typical I-segment is evaluated. As a first step, the corresponding joint distribution for the so-called typical remaining I-segment is derived. Dedicated to the 80th birthday of Klaus Krickeberg  相似文献   
36.
37.
The airborne transport of particles on a granular surface by the saltation mechanism is studied through numerical simulation of particles dragged by turbulent air flow. We calculate the saturated flux qs and show that its dependence on the wind strength u* is consistent with several empirical relations obtained from experimental measurements. We propose and explain a new relation for fluxes close to the threshold velocity ut, namely, qs=a(u*-ut)α with α≈2. We also obtain the distortion of the velocity profile of the wind due to the drag of the particles and find a novel dynamical scaling relation. We also obtain a new expression for the dependence of the height of the saltation layer as function of the strength of the wind.  相似文献   
38.
When a ferrofluid drop is trapped in a horizontal Hele-Shaw cell and subjected to a vertical magnetic field, a fingering instability results in the droplet evolving into a complex branched structure. This fingering instability depends on the magnetic field ramp rate but also depends critically on the initial state of the droplet. Small perturbations in the initial droplet can have a large influence on the resulting final pattern. By simultaneously applying a stabilizing (horizontal) azimuthal magnetic field, we gain more control over the mode selection mechanism. We perform a linear stability analysis that shows that any single mode can be selected by appropriately adjusting the strengths of the applied fields. This offers a unique and accurate mode selection mechanism for this confined magnetic fluid system. We present the results of numerical simulations that demonstrate that this mode selection mechanism is quite robust and “overpowers” any initial perturbations on the droplet. This provides a predictable way to obtain patterns with any desired number of fingers.  相似文献   
39.
We compare extensive experimental results for the gravity-driven steady drainage of oil-in-water emulsions with two theoretical predictions, both based on the assumption of Poiseuille flow. The first is from standard foam drainage theory, applicable at low aqueous volume fractions, for which a correction is derived to account for the effects of the confinement of the emulsion. The second arises from considering the permeability of a model porous medium consisting of solid sphere packings, applicable at higher aqueous volume fractions. We find quantitative agreement between experiment and the foam drainage theory at low aqueous volume fractions. At higher aqueous volume fractions, the reduced flow rate calculated from the permeability theory approaches the master curve of the experimental data. Our experimental data demonstrates the analogy between the problem of electrical flow and liquid flow through foams and emulsions.  相似文献   
40.
The prediction of volume fractions in order to measure the multiphase flow rate is a very important issue and is the key parameter of multi-phase flow meters (MPFMs). Currently, the gamma ray attenuation technique is known as one of the most precise methods for obtaining volume fractions. The gamma ray attenuation technique is based on the mass attenuation coefficient, which is sensitive to density changes; density is sensitive in turn to temperature and pressure fluctuations. Therefore, MPFM efficiency depends strongly on environmental conditions. The conventional solution to this problem is the periodical recalibration of MPFMs, which is a demanding task. In this study, a method based on dual-modality densitometry and artificial intelligence (AI) is presented, which offers the advantage of the measurement of the oil–gas–water volume fractions independent of density changes. For this purpose, several experiments were carried out and used to validate simulated dual modality densitometry results. The reference density point was established at a temperature of 20 °C and pressure of 1 bar. To cover the full range of likely density fluctuations, four additional density sets were defined (at changes of ±4% and ±8% from the reference point). An annular regime with different percentages of oil, gas and water at different densities was simulated. Four features were extracted from the transmission and scattered detectors and were applied to the artificial neural network (ANN) as inputs. The input parameters included the 241Am full energy peak, 137Cs Compton edge, 137Cs full energy peak and total scattered count, and the outputs were the oil and air percentages. A multi-layer perceptron (MLP) neural network was used to predict the volume fraction independent of the oil and water density changes. The obtained results show that the proposed ANN model achieved good agreement with the real data, with an estimated root mean square error (RMSE) of less than 3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号