首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
数学   12篇
物理学   1篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2009年   2篇
  2006年   1篇
  2000年   1篇
  1996年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
11.
《Applied Mathematical Modelling》2014,38(19-20):4640-4651
In this paper, we consider a retrial and repairable multi-component system with mixed warm and cold standby components. It is assumed that the failure times of primary (operating) and warm standby components follow exponential distributions. When a component fails, it is sent to a service station with a single server (repairman) and no waiting space. The failed component is repaired if the server is idle and it has to enter an orbit if the server is busy. The failed component in the orbit will try to get the repair service again after an exponentially distributed random time period. The repair time also has an exponential distribution. The mean time-to-failure, MTTF, and the steady-state availability, AT(∞), are derived in this retrial and repairable system. Using a numerical example, we compare the systems with and without retrials in terms of the cost/benefit ratios. Sensitivity analysis for the mean time-to-failure and the steady-state availability are investigated as well.  相似文献   
12.
It is well recognized that using the hot standby redundancy provides fast restoration in the case of failures. However the redundant elements are exposed to working stresses before they are used, which reduces the overall system reliability. Moreover, the cost of maintaining the hot redundant elements in the operational state is usually much greater than the cost of keeping them in the cold standby mode. Therefore, there exists a tradeoff between the cost of losses associated with the restoration delays and the operation cost of standby elements. Such a trade-off can be obtained by designing both hot and cold redundancy types into the same system. Thus a new optimization problem arises for the standby system design. The problem, referred to in this work as optimal standby element distributing and sequencing problem (SE-DSP) is to distribute a fixed set of elements between cold and hot standby groups and select the element initiation sequence so as to minimize the expected mission operation cost of the system while providing a desired level of system reliability. This paper first formulates and solves the SE-DSP problem for 1-out-of-N: G heterogeneous non-repairable standby systems. A numerical method is proposed for evaluating the system reliability and expected mission cost simultaneously. This method is based on discrete approximation of time-to-failure distributions of the system elements. A genetic algorithm is used as an optimization tool for solving the formulated optimization problem. Examples are given to illustrate the considered problem and the proposed solution methodology.  相似文献   
13.
In this paper, we treat the problem of stochastic comparison of standby [active] redundancy at component level versus system level. In the case of standby redundancy, we present some interesting comparison results of both series systems and parallel systems in the sense of various stochastic orderings for both the matching spares case and non-matching spares case, respectively. In the case of active redundancy, a likelihood ratio ordering result of series systems is presented for the matching spares case; and for the non-matching spares case, a counterexample is provided to show that there does not exist similar result even for the hazard rate ordering. The results established here strengthen and generalize some of those known in the literature. Some numerical examples are also provided to illustrate the theoretical results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号