全文获取类型
收费全文 | 2204篇 |
免费 | 70篇 |
国内免费 | 118篇 |
专业分类
化学 | 1327篇 |
晶体学 | 18篇 |
力学 | 215篇 |
综合类 | 8篇 |
数学 | 22篇 |
物理学 | 802篇 |
出版年
2024年 | 7篇 |
2023年 | 21篇 |
2022年 | 51篇 |
2021年 | 50篇 |
2020年 | 95篇 |
2019年 | 164篇 |
2018年 | 84篇 |
2017年 | 95篇 |
2016年 | 77篇 |
2015年 | 66篇 |
2014年 | 62篇 |
2013年 | 262篇 |
2012年 | 107篇 |
2011年 | 152篇 |
2010年 | 83篇 |
2009年 | 121篇 |
2008年 | 91篇 |
2007年 | 142篇 |
2006年 | 109篇 |
2005年 | 135篇 |
2004年 | 71篇 |
2003年 | 53篇 |
2002年 | 45篇 |
2001年 | 32篇 |
2000年 | 33篇 |
1999年 | 39篇 |
1998年 | 22篇 |
1997年 | 24篇 |
1996年 | 18篇 |
1995年 | 20篇 |
1994年 | 15篇 |
1993年 | 4篇 |
1992年 | 5篇 |
1991年 | 7篇 |
1990年 | 6篇 |
1989年 | 5篇 |
1988年 | 6篇 |
1987年 | 2篇 |
1986年 | 2篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1983年 | 2篇 |
1982年 | 2篇 |
1981年 | 1篇 |
1979年 | 1篇 |
1957年 | 1篇 |
排序方式: 共有2392条查询结果,搜索用时 15 毫秒
21.
We conducted a numerical study on the fluid dynamic, thermal and chemical structures of laminar methane–air micro flames established under quiescent atmospheric conditions. The micro flame is defined as a flame on the order of one millimetre or less established at the exit of a vertically-aligned straight tube. The numerical model consists of convective–diffusive heat and mass transport with a one-step, irreversible, exothermic reaction with selected kinetics constants validated for near-extinction analyses. Calculations conducted under the burner rim temperature 300 K and the adiabatic burner wall showed that there is the minimum burner diameter for the micro flame to exist. The Damköhler number (the ratio of the diffusive transport time to the chemical time) was used to explain why a flame with a height of less than a few hundred microns is not able to exist under the adiabatic burner wall condition. We also conducted scaling analysis to explain the difference in extinction characteristics caused by different burner wall conditions. This study also discussed the difference in governing mechanisms between micro flames and microgravity flames, both of which exhibit similar spherical flame shape. 相似文献
22.
In the present work, the method of simplifying chemical kinetics based on Intrinsic Low-Dimensional Manifolds (ILDMs) is modified to deal with the coupling of reaction and diffusion processes. Several problems of the ILDM method are overcome by a relaxation to an invariant system manifold (Reaction–Diffusion Manifold – REDIM). This relaxation process is governed by a multidimensional parabolic partial differential equation system, where, as an initial solution, an extended ILDM is used. Furthermore, a method for the solution and tabulation of the manifold is proposed in terms of generalized coordinates, with a subsequent procedure for the integration of the reduced system on the found manifold. This modification of the ILDM significantly improves the performance of the concept and allows us to extend its area of applicability. Illustrative comparative calculations of detailed and reduced models of flat laminar flames verify the approach. 相似文献
23.
A computational fluid dynamics (CFD) tool for performing turbulent combustion simulations that require finite-rate chemistry is developed and tested by modelling a series of bluff-body stabilized flames that exhibit different levels of finite-rate chemistry effects ranging from near equilibrium to near global extinction. The new modelling tool is based on the multi-environment probability density function (MEPDF) methodology and combines the following: the direct quadrature method of moments (DQMOM); the interaction-by-exchange-with-the-mean (IEM) mixing model; and realistic combustion chemistry. Using DQMOM, the MEPDF model can be derived from the transport PDF equation by depicting the joint composition PDF as a weighted summation of a finite number of multi-dimensional Dirac delta functions in the composition space. The MEPDF method with multiple reactive scalars retains the unique property of the joint PDF method of treating chemical reactions exactly. However, unlike the joint PDF methods that typically must resort to particle-based Monte-Carlo solution schemes, the MEPDF equations (i.e. the transport equations of the weighted delta-peaks) can be solved by traditional Eulerian grid-based techniques. In the current study, a pseudo time-splitting scheme is adopted to solve the MEPDF equations; the reaction source terms are computed with a highly efficient and accurate in-situ adaptive tabulation (ISAT) algorithm. A 19-species reduced mechanism based on quasi-steady state assumptions is used in the simulations of the bluff-body flames. The modelling results are compared with the experimental data, including mixing, temperature, major species and important minor species such as CO and NO. Compared with simulations using a Monte-Carlo joint PDF method, the new approach shows comparable accuracy. 相似文献
24.
S. S. Krishnan J. M. Abshire P. B. Sunderland Z.-G. Yuan J. P. Gore 《Combustion Theory and Modelling》2013,17(4):605-620
Flame shape is an important observed characteristic of flames that can be used to scale flame properties such as heat release rates and radiation. Flame shape is affected by fuel type, oxygen levels in the oxidiser, inverse burning and gravity. The objective of this study is to understand the effect of high oxygen concentrations, inverse burning, and gravity on the predictions of flame shapes. Flame shapes are obtained from recent analytical models and compared with experimental data for a number of inverse and normal ethane flame configurations with varying oxygen concentrations in the oxidiser and under earth gravity and microgravity conditions. The Roper flame shape model was extended to predict the complete flame shapes of laminar gas jet normal and inverse diffusion flames on round burners. The Spalding model was extended to inverse diffusion flames. The results show that the extended Roper model results in reasonable predictions for all microgravity and earth gravity flames except for enhanced oxygen normal diffusion flames under earth gravity conditions. The results also show trends towards cooler flames in microgravity that are in line with past experimental observations. Some key characteristics of the predicted flame shapes and parameters needed to describe the flame shape using the extended Roper model are discussed. 相似文献
25.
Hirokazu Sato Shusaku Hamada Roberto M. Sertkawa Tatsuya Nishimura Takashi Usui Hideo Sekino 《高压研究》2013,33(1-6):403-413
Abstract Continuous flames have been observed in Supercritical water oxidation (scWO) of isopropyl alcohol (IPA), using a vertical continuous reactor with sapphire windows and a mixing nozzle. Two types of continuous flame were confirmed: the one was long pale blue colored and the other was red short cone shaped, changing blue to red at around air ratio 2.0. The flame was strongly influenced by IPA concentration, air ratio and design of the mixing nozzle. Results for decomposition of PA are presented for IPA concentrations ranging from 600 up to 28260 ppm as TOC and initial reactor temperatures, were mostly around 490°C, at 25 MPa. Decomposition rate at steady state was over 99.9%. Experimentally measured CO2 and O2 concentrations at the flue gas were in good agreement with theoretically calculated values. Even for low air ratio as 1.1, high decomposition rate without CO, NO, NO2 was achieved. 相似文献
26.
A model is developed for the formation and propagation of cracks in a material sample that is heated at its top surface, pyrolyses, and then thermally degrades to form char. In this work the sample is heated uniformly over its entire top surface by a hypothetical flame (a heat source). The pyrolysis mechanism is described by a one-step overall reaction that is dependent nonlinearly on the temperature (Arrhenius form). Stresses develop in response to the thermal degradation of the material by means of a shrinkage strain caused by local mass loss during pyrolysis. When the principal stress exceeds a prescribed threshold value, the material forms a local crack. Cracks are found to generally originate at the surface in response to heating, but occasionally they form in the bulk, away from ever-changing material boundaries. The resulting cracks evolve and form patterns whose characteristics are described. Quantities examined in detail are: the crack spacing in the pyrolysis zone; the crack length evolution; the formation and nature of crack loops which are defined as individual cracks that have joined to form loops that are disconnected from the remaining material; the formation of enhanced pyrolysis area; and the impact of all of the former quantities on mass flux. It is determined that the mass flux from the sample can be greatly enhanced over its nominal (non-cracking) counterpart. The mass efflux profile qualitatively resembles those observed in Cone Calorimeter tests. 相似文献
27.
本文使用详细的化学反应机理模拟了C2H6/O2/N2/AR层流对冲扩散火焰中多环芳烃的生成动力学过程。反应机理包括96种组分的502个基元反应。通过数值计算分析了层流对冲火焰的结构和主要反应物、中间物质和反应产物的浓度变化,并与相关文献的实验结果进行了比较。结果表明,数值模拟在燃烧过程和PAH生成规律上与实验结果是一致的,但在某些组分的定量预报上存在一定的差别。 相似文献
28.
29.
30.
研制了可用于大型爆炸现场的、 测量爆炸火焰真温的多光谱温度计(量程为800~3 500 ℃,波长范围为0.6~1.1 μm)。测量原理进一步改进,加入亮温逼近法解决了二次测量法初值选取困难的问题,并应用此高温计在空旷场地对3 kg TNT炸药爆炸的全过程进行测量。通过实验结果的分析可知,此高温计可以测量爆炸火焰真温变化全过程,对波阵面瞬时温度与燃烧火球温度的测量均具有很好的效果。同时,分析了影响此高温计测量精度的各个因素,得出目前制约多光谱高温计测量精度提高的主要因素仍然为真温算法及标定方法的误差,这为今后研制高精度高温计明确了方向。 相似文献