首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   219篇
  免费   3篇
  国内免费   6篇
化学   64篇
力学   10篇
数学   129篇
物理学   25篇
  2023年   49篇
  2022年   6篇
  2021年   2篇
  2020年   7篇
  2019年   4篇
  2018年   4篇
  2015年   3篇
  2014年   6篇
  2013年   28篇
  2012年   4篇
  2011年   13篇
  2010年   12篇
  2009年   13篇
  2008年   8篇
  2007年   8篇
  2006年   10篇
  2005年   5篇
  2004年   4篇
  2003年   4篇
  2002年   4篇
  2001年   6篇
  2000年   1篇
  1999年   1篇
  1998年   5篇
  1997年   3篇
  1996年   5篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1987年   1篇
  1984年   1篇
  1981年   3篇
  1979年   1篇
排序方式: 共有228条查询结果,搜索用时 31 毫秒
31.
32.
Splitting number     
We show that it is consistent with that every uncountable set can be continuously mapped onto a splitting family.

  相似文献   

33.
Renewable H2 production by water electrolysis has attracted much attention due to its numerous advantages. However, the energy consumption of conventional water electrolysis is high and mainly driven by the kinetically inert anodic oxygen evolution reaction. An alternative approach is the coupling of different half-cell reactions and the use of redox mediators. In this review, we, therefore, summarize the latest findings on innovative electrochemical strategies for H2 production. First, we address redox mediators utilized in water splitting, including soluble and insoluble species, and the corresponding cell concepts. Second, we discuss alternative anodic reactions involving organic and inorganic chemical transformations. Then, electrochemical H2 production at both the cathode and anode, or even H2 production together with electricity generation, is presented. Finally, the remaining challenges and prospects for the future development of this research field are highlighted.  相似文献   
34.
It is challenging to design one non-noble material with balanced bifunctional performance for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) for commercial sustainability at a low cost since the different electrocatalytic mechanisms are not easily matchable for each other. Herein, a self-standing hybrid system Ni18Fe12Al70, consisting of Ni2Al3 and Ni3Fe phases, was constructed by laser-assisted aluminum (Al) incorporation towards full water splitting. It was found that the incorporation of Al could effectively tune the morphologies, compositions and phases. The results indicate that Ni18Fe12Al70 delivers an extremely low overpotential to trigger both HER (η100=188 mV) and OER (η100=345 mV) processes and maintains a stable overpotential for 100 h, comparable to state-of-the-art electrocatalysts. The synergistic effect of Ni2Al3 and Ni3Fe alloys on the HER process is confirmed based on theoretical calculation.  相似文献   
35.
Photocatalytic water splitting and carbon dioxide (CO2) reduction provide promising solutions to global energy and environmental issues. In recent years, metal-organic frameworks (MOFs), a class of crystalline porous solids featuring well-defined and tailorable structures as well as high surface areas, have captured great interest toward photocatalytic water splitting and CO2 reduction. In this review, the semiconductor-like behavior of MOFs is first discussed. We then summarize the recent advances in photocatalytic water splitting and CO2 reduction over MOF-based materials and focus on the unique advantage of MOFs for clarifying the structure-property relationship in photocatalysis. In addition, some representative characterization techniques have been presented to unveil the photocatalytic kinetics and reaction intermediates in MOF-based systems. Finally, the challenges, and perspectives for future directions are proposed.  相似文献   
36.
The conversion of industrial exhaust gases of nitrogen oxides into high-value products is significantly meaningful for global environment and human health. And green synthesis of amino acids is vital for biomedical research and sustainable development of mankind. Herein, we demonstrate an innovative approach for converting nitric oxide (NO) to a series of α-amino acids (over 13 kinds) through electrosynthesis with α-keto acids over self-standing carbon fiber membrane with CoFe alloy. The essential leucine exhibits a high yield of 115.4 μmol h−1 corresponding a Faradaic efficiency of 32.4 %, and gram yield of products can be obtained within 24 hours in lab as well as an ultra-long stability (>240 h) of the membrane catalyst, which could convert NO into NH2OH rapidly attacking α-keto acid and subsequent hydrogenation to form amino acid. In addition, this method is also suitable for other nitrogen sources including gaseous NO2 or liquidus NO3 and NO2. Therefore, this work not only presents promising prospects for converting nitrogen oxides from exhaust gas and nitrate-laden waste water into high-value products, but also has significant implications for synthetizing amino acids in biomedical and catalytic science.  相似文献   
37.
To date, only a few noble metal oxides exhibit the required efficiency and stability as oxygen evolution reaction (OER) catalysts under the acidic, high-voltage conditions that exist during proton exchange membrane water electrolysis (PEMWE). The high cost and scarcity of these catalysts hinder the large-scale application of PEMWE. Here, we report a novel OER electrocatalyst for OER comprised of uniformly dispersed Ru clusters confined on boron carbon nitride (BCN) support. Compared to RuO2, our BCN-supported catalyst shows enhanced charge transfer. It displays a low overpotential of 164 mV at a current density of 10 mA cm−2, suggesting its excellent OER catalytic activity. This catalyst was able to operate continuously for over 12 h under acidic conditions, whereas RuO2 without any support fails in 1 h. Density functional theory (DFT) calculations confirm that the interaction between the N on BCN support and Ru clusters changes the adsorption capacity and reduces the OER energy barrier, which increases the electrocatalytic activity of Ru.  相似文献   
38.
In the pursuit of long-term stability for oxygen evolution reaction (OER) in seawater, retaining the intrinsic catalytic activity is essential but has remained challenging. Herein, we developed a NixCryO electrocatalyst that manifested exceptional OER stability in alkaline condition while improving the activity over time by dynamic self-restructuring. In 1 M KOH, NixCryO required overpotentials of only 270 and 320 mV to achieve current densities of 100 and 500 mA cm−2, respectively, with excellent long-term stability exceeding 475 h at 100 mA cm−2 and 280 h at 500 mA cm−2. The combination of electrochemical measurements and in situ studies revealed that leaching and redistribution of Cr during the prolonged electrolysis resulted in increased electrochemically active surface area. This eventually enhanced the catalyst porosity and improved OER activity. NixCryO was further applied in real seawater from the Red Sea (without purification, 1 M KOH added), envisaging that the dynamically evolving porosity can offset the adverse active site-blocking effect posed by the seawater impurities. Remarkably, NixCryO exhibited stable operation for 2000, 275 and 100 h in seawater at 10, 100 and 500 mA cm−2, respectively. The proposed catalyst and the mechanistic insights represented a step towards realization of non-noble metal-based direct seawater splitting.  相似文献   
39.
A few-layer fullerene network possesses several advantageous characteristics, including a large surface area, abundant active sites, high charge mobility, and an appropriate band gap and band edge for solar water splitting. Herein, we report for the first time that the few-layer fullerene network shows interesting photocatalytic performance in pure water splitting into H2 and H2O2 in the absence of any sacrificial reagents. Under optimal conditions, the H2 and H2O2 evolution rates can reach 91 and 116 μmol g−1 h−1, respectively, with good stability. This work demonstrates the novel application of the few-layer fullerene network in the field of energy conversion.  相似文献   
40.
In situ photo-deposition of both Pt and CoOx cocatalysts on the facets of poly (triazine imide) (PTI) crystals has been developed for photocatalytic overall water splitting. However, the undesired backward reaction (i.e., water formation) on the noble Pt surface is a spontaneously down-hill process, which restricts their efficiency to run the overall water splitting reaction. Herein, we demonstrate that the efficiency for photocatalytic overall water splitting could be largely promoted by the decoration of Rh/Cr2O3 and CoOx as H2 and O2 evolution cocatalysts, respectively. Results reveal that the dual cocatalysts greatly extract charges from bulk to surface, while the Rh/Cr2O3 cocatalyst dramatically restrains the backward reaction, achieving an apparent quantum efficiency (AQE) of 20.2 % for the photocatalytic overall water splitting reaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号