全文获取类型
收费全文 | 1860篇 |
免费 | 171篇 |
国内免费 | 116篇 |
专业分类
化学 | 714篇 |
晶体学 | 5篇 |
力学 | 310篇 |
综合类 | 15篇 |
数学 | 318篇 |
物理学 | 785篇 |
出版年
2024年 | 4篇 |
2023年 | 14篇 |
2022年 | 29篇 |
2021年 | 33篇 |
2020年 | 41篇 |
2019年 | 43篇 |
2018年 | 46篇 |
2017年 | 54篇 |
2016年 | 73篇 |
2015年 | 48篇 |
2014年 | 74篇 |
2013年 | 126篇 |
2012年 | 121篇 |
2011年 | 120篇 |
2010年 | 103篇 |
2009年 | 110篇 |
2008年 | 128篇 |
2007年 | 118篇 |
2006年 | 119篇 |
2005年 | 96篇 |
2004年 | 115篇 |
2003年 | 87篇 |
2002年 | 80篇 |
2001年 | 61篇 |
2000年 | 56篇 |
1999年 | 44篇 |
1998年 | 33篇 |
1997年 | 37篇 |
1996年 | 16篇 |
1995年 | 12篇 |
1994年 | 13篇 |
1993年 | 12篇 |
1992年 | 12篇 |
1991年 | 8篇 |
1990年 | 5篇 |
1989年 | 10篇 |
1988年 | 9篇 |
1987年 | 8篇 |
1986年 | 5篇 |
1985年 | 4篇 |
1984年 | 2篇 |
1982年 | 4篇 |
1981年 | 4篇 |
1980年 | 2篇 |
1978年 | 2篇 |
1975年 | 1篇 |
1973年 | 1篇 |
1969年 | 1篇 |
1957年 | 1篇 |
1936年 | 1篇 |
排序方式: 共有2147条查询结果,搜索用时 15 毫秒
121.
Seung Hyun Sung William B. Farnham Heidi E. Burch Yefim Brun Kai Qi Thomas H. Epps 《Journal of Polymer Science.Polymer Physics》2019,57(24):1663-1672
We demonstrate the directional alignment of perpendicular‐lamellae domains in fluorinated three‐armed star block polymer (BP) thin films using solvent vapor annealing with shear stress. The control of orientation and alignment was accomplished without any substrate surface modification. Additionally, three‐armed star poly(methyl methacrylate‐block‐styrene) [PMMA‐PS] and poly(octafluoropentyl methacrylate‐block‐styrene) were compared to their linear analogues to examine the impact of fluorine content and star architecture on self‐assembled BP feature sizes and interdomain density profiles. X‐ray reflectometry results indicated that the star BP molecular architecture increased the effective polymer segregation strength and could possibly facilitate reduced polymer domain spacings, which are useful in next‐generation nanolithographic applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1663–1672 相似文献
122.
New hyperbranched hydrophobic cross‐linkers with peripheral azide groups were synthesized as follows: First, star‐shaped polycaprolactones (sPCL) were synthesized by ring‐opening polymerization of caprolactone in the presence of pentaerythritol and tin (II) octoate. In the next step, sequential acrylation, Micheal addition, tosylation, and azidation by acryloyl chloride, diethanol amine, tosyl chloride, and sodium azide were respectively exploited to synthesize azide‐functionalized hyperbranched star‐shaped polycaprolactones which were named sPCL‐acrylate‐diethanolamine‐azide (sPCL‐AC‐DEA‐N3) and sPCL‐acrylate‐diethanolamine‐acrylate‐diethanolamine‐azide (sPCL‐AC‐DEA‐AC‐N3). All steps were thoroughly characterized by FT‐IR and 1H NMR spectroscopy. The GPC analysis showed that the molecular weight of sPCL increased after two azide functionalizations. Amphiphilic hydrogels based on sPCL‐AC‐DEA‐N3 (Mn = 8130 g/mol) and sPCL‐AC‐DEA‐AC‐N3 (Mn = 10112 g/mol) with linear alkyne‐terminated polyethylene glycols (PEG) (Mn = 2000, 4000, and 6000 g/mol) were synthesized through click coupling between azide and alkyne groups. In both hydrogels, the swelling ratio increased by increasing the molecular weight of PEG. The obtained results showed that the branching of the cross‐linker, significantly affected the swelling ratio of hydrogels. For instance, the swelling ratio of sPCL‐AC‐DEA‐AC‐N3 and PEG‐6000 (Q = 900) was higher than sPCL‐AC‐DEA‐N3 and PEG‐6000 (Q = 600). Despite the high cross‐linking density of sPCL‐AC‐DEA‐AC‐DEA‐N3–based hydrogels, the amount of released theophylline was higher than sPCL‐AC‐DEA‐N3–based hydrogels, due to the high content of PEG in these hydrogels. 相似文献
123.
Asghar Bodaghi 《先进技术聚合物》2019,30(11):2827-2832
Novel A2B2‐type energetic miktoarm star‐shaped copolymers composed of two PGN arms and two PCL arms was synthesized by the combination of ring‐opening polymerization (ROP) and “click” chemistry. Initially, diazido end‐functionalized two‐arm PGN, (PGN)2‐(N3)2, was synthesized by ROP of glycidyl nitrate monomers. Subsequently, (PGN)2‐(PCL)2 was obtained from the click reaction between diazido end‐functionalized (PGN)2‐(N3)2 polymers and propargyl‐terminated poly(ε‐caprolactone) (PTPCL). This star copolymer solves problems of PCL (lake of energy) and PGN (low Tg). The Fourier‐transform infrared (FT‐IR), 1H nuclear magnetic resonance (NMR), and gel permeation chromatography (GPC) studies revealed that (PGN)2‐(PCL)2 was successfully obtained. The thermal behavior of star polymer was investigated by thermogravimetric analysis (TGA) and derivative thermogravimetry. The results show that (PGN)2‐(PCL)2 decomposed at two stages. The first stage is seen at 212.6°C which related to degradation of –ONO2 group and second stage attributed to degradation of PCL group which is seen at 346.1°C. 相似文献
124.
Yoshiki Shibuya Ryoichi Tatara Yivan Jiang Yang Shao‐Horn Jeremiah A. Johnson 《Journal of polymer science. Part A, Polymer chemistry》2019,57(3):448-455
The properties of polymeric materials are dictated not only by their composition but also by their molecular architecture. Here, by employing brush‐first ring‐opening metathesis polymerization (ROMP), norbornene‐terminated poly(ethylene oxide) (PEO) macromonomers ( MM‐n , linear architecture), bottlebrush polymers ( Brush‐n , comb architecture), and brush‐arm star polymers ( BASP‐n , star architecture), where n indicates the average degree of polymerization (DP) of PEO, are synthesized. The impact of architecture on the thermal properties and Li+ conductivities for this series of PEO architectures is investigated. Notably, in polymers bearing PEO with the highest degree of polymerization, irrespective of differences in architecture and molecular weight (~100‐fold differences), electrolytes with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as an Li+ source exhibit normalized ionic conductivities (σn) within only 4.9 times difference (σn = 29.8 × 10?5 S cm?1 for MM‐45 and σn = 6.07 × 10?5 S cm?1 for BASP‐45 ) at a concentration of Li+ r = [Li+]/[EO] = 1/12 at 50 °C. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 448–455 相似文献
125.
非线形嵌段共聚物的合成 总被引:1,自引:0,他引:1
主要介绍了非线形嵌段共聚物,如星型嵌段共聚物、杂臂星型共聚物、梳型聚合物等的合成方法,包括多官能团引发剂法、大分子引发剂法等。各种活性聚合方法,如阳离子开环聚合、原子转移自由基聚合(ATRP)和氮氧稳定自由基聚合等都可以用于合成非线形嵌段共聚物。 相似文献
126.
Giovanni Maglio Giuseppe Nese Margherita Nuzzo Rosario Palumbo 《Macromolecular rapid communications》2004,25(12):1139-1144
Summary: Star‐shaped hydroxy‐terminated poly(ε‐caprolactone)s (ssPCL), with arms of different lengths, were obtained by ring‐opening polymerization (ROP) of ε‐caprolactone initiated by pentaerythritol, and were condensed with α‐methyl‐ω‐(3‐carboxypropionyloxy)‐poly(ethylene oxide)s ( = 550–5 000) to afford four‐armed PCL‐PEO star diblock copolymers (ssPCL‐PEO). The polymers were characterized by 1H and 13C NMR spectroscopy and size‐exclusion chromatography (SEC). The melting behavior of ssPCLs was studied by differential scanning calorimetry (DSC). X‐ray diffraction and DSC techniques were used to investigate the crystalline phases of ssPCL‐PEOs.
127.
Lie‐Ding Shiau 《Macromolecular theory and simulations》2004,13(9):783-789
Summary: A probability model, based on the “in‐out” recursive analysis, is developed for obtaining the average molecular weights of star polymers formed by connecting polydispersed primary chains onto a multifunctional coupling agent. The average properties and the polydispersity index of the formed star polymers can be described as a function of the reaction conversion and the average properties of the polydispersed primary chains without the knowledge of the whole distribution. The results indicate that, although PI of the resulting star polymers might increase at the intermediate conversion for the higher functionalities of the core molecules, the resulting star polymers generally have narrower molecular weight distributions at the complete conversion compared to the initial polydispersed polymer chains.
128.
The electrophoretic mobility of three-arm asymmetric star DNA molecules, produced by incorporating a short DNA branch at the midpoint of rigid-rod linear DNA fragments, is investigated in polyacrylamide gels. We determine how long the added branch must be to separate asymmetric star DNA from linear DNA with the same total molecular weight. This work focuses on two different geometric progressions of small DNA molecules. First, branches of increasing length were introduced at the center of a linear DNA fragment of constant length. At a given gel concentration, we find that relatively small branch lengths are enough to cause a detectable reduction in electrophoretic mobility. The second geometric progression starts with a small branch on a linear DNA fragment. As the length of this branch is increased, the DNA backbone length is decreased such that the total molar mass of the molecule remains constant. The branch length was then increased until the asymmetric branched molecule becomes a symmetric three-arm star polymer, allowing the effect of molecular topology on mobility to be studied independent of size effects. DNA molecules with very short branches have a mobility smaller than linear DNA of identical molar mass. The reason for this change in mobility when branching is introduced is not known, however, we explore two possible explanations in this article. (i) The branched DNA could have a greater interaction with the gel than linear DNA, causing it to move slower; (ii) the linear DNA could have modes of motion or access to pores that are unavailable to the branched DNA. 相似文献
129.
Lei Zhang Wei Zhang Nianchen Zhou Jian Zhu Zhengbiao Zhang Zhenping Cheng 《高分子科学杂志,A辑:纯化学与应用化学》2013,50(9):876-885
One linear and two miktoarm star side-chain liquid crystalline (LC) block copolymers with p-methoxyazobenzene moieties were prepared by a combination of ring-opening polymerization (ROP) and atom transfer radical polymerization (ATRP) techniques. First, ROPs of ε -caprolactone (ε -CL) were carried out catalyzed by Sn(Oct)2 using three multifunctional initiators, hydroxyethyl 2-bromoisobutyrate (AB type), 3-hydroxy-2-(hydroxymethyl)-2-methylpropyl 2-bromo-2-methylpropanoate (A2B type) and 2,2-bis(hydroxymethyl)propane-1,3-diyl bis(2-bromo-2-methylpropanoate) (A2B2 type), at 110°C in toluene, respectively. Second, the previously obtained poly(ε -caprolactone)s (PCLs) with bromines functionalities were used as the macroinitiators to conduct ATRP of 6-(4-methoxy-4-oxy-azobenzene) hexyl methacrylate (MMAZO) with CuBr/PMDETA as the catalyst systems at 85°C in anisole to prepare the linear and miktoarm side-chain LC block copolymers (PCL-b-PMMAZO, (PCL)2-(PMMAZO) and (PCL)2-(PMMAZO)2). The produced polymers were well-controlled with the controlled molecular weights and the relatively narrow molecular weight distributions (M w/M n ≤ 1.35). The structures of the obtained polymers were all characterized by NMR, FT-IR and GPC analysis. Furthermore, the LC properties of the linear and miktoarm star block copolymers were also investigated by differential scanning calorimetry (DSC) and thermal polarized optical microscopy (POM). 相似文献
130.
Ravindra Mahadev Patil Anil A. Ghanwat Satyanarayana Ganugapati 《高分子科学杂志,A辑:纯化学与应用化学》2013,50(2):114-123
Well-defined four-arm star poly(?-caprolactone)-block-poly(cyclic carbonate methacrylate) (PCL-b-PCCMA) copolymers were synthesized by combining ring-opening polymerization (ROP) with atom transfer radical polymerization (ATRP). First, a four-arm poly(?-caprolactone) (PCL) macroinitiator [(PCL-Br)4] was prepared by the ROP of ?-CL catalyzed by stannous octoate at 110°C in the presence of pentaerythritol as the tetrafunctional initiator followed by esterification with 2-bromoisobutyryl bromide. The sequential ATRP of CCMA monomer was carried out by using the (PCL-Br)4 tetrafunctional macroinitiator (MI) and in the presence of CuBr/2, 2′-bipyridyl system in DMF at 80°C with [(MI)]:[CuBr]:[bipyridyl] = 1:1:3 to yield block polymers with controlled molecular weights (Mn (NMR) = 10700 to 27300 g/mol) by varying block lengths and with moderately narrow polydispersities (Mw/Mn = 1.2–1.4). Block copolymers with different PCL: PCCMA copolymer composition such as 50:50, 70:30 and 74:26 were prepared with good yields (48-74%). All these block copolymers were well characterized by NMR, FTIR and GPC and tested their thermal properties by DSC and TGA. 相似文献